Homework Set No. 5, Physics 8808.02
 Deadline - Tuesday, March 26, 2013

1. (15 pts) Imagine that the full non-perturbative beta-function of QED were

$$
\beta(\alpha)=\frac{\alpha^{2}}{3 \pi}\left[1-e^{1-\frac{1}{\alpha}}\right] .
$$

Find the running QED coupling constant $\alpha\left(Q^{2}\right)$ for such beta-function. Sketch $\alpha\left(Q^{2}\right)$ as a function of Q^{2}. Find the UV fixed point and determine the large- Q^{2} asymptotics of $\alpha\left(Q^{2}\right)$, i.e., find how it approaches the fixed point.
2. a. (15 pts) Consider a harmonic oscillator in a background of a time-dependent external force (source) $j(t)$. The Lagrangian is

$$
L=\frac{1}{2} m \dot{q}^{2}-\frac{1}{2} m \omega^{2} q^{2}+q j(t) .
$$

Using quasi-classical method for evaluation of path integrals find the time-evolution (Feynman) kernel

$$
\begin{aligned}
U\left(q_{f}, t_{f} ; q_{i}, t_{i}\right) & ={ }_{S}\left\langle q_{f}\left(t_{f}\right)\right| e^{-\frac{i}{\hbar} \hat{H}\left(t_{f}-t_{i}\right)}\left|q_{i}\left(t_{i}\right)\right\rangle_{S}={ }_{H}\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle_{H} \\
& =\int[\mathcal{D} q] \exp \left\{\frac{i}{\hbar} \int_{t_{i}}^{t_{f}} d t L(t)\right\} .
\end{aligned}
$$

You may use the result derived in class for the harmonic oscillator without the external force, though this time you also need to find the classical action in terms of $j(t)$. In evaluating the classical action assume that $q_{i}=q_{f}=0$, or, more specifically, require that $q_{c l}(t)=0$ when $j(t)=0$. When solving classical EOM you may find Fourier-integral decomposition

$$
q(t)=\int_{-\infty}^{\infty} \frac{d E}{2 \pi} e^{-\frac{i}{\hbar} E t} q_{E}
$$

useful.
b. (10 pts) Use the result of part a to show that the two-point function for the harmonic oscillator without the external force is given by

$$
\begin{equation*}
\langle 0| \mathrm{T} \hat{q}\left(t_{1}\right) \hat{q}\left(t_{2}\right)|0\rangle=i \frac{\hbar^{2}}{m} \int_{-\infty}^{\infty} \frac{d E}{2 \pi} \frac{e^{-\frac{i}{\hbar} E\left(t_{1}-t_{2}\right)}}{E^{2}-\hbar^{2} \omega^{2}+i \epsilon} . \tag{1}
\end{equation*}
$$

c. (10 pts) Re-derive the two-point function in Eq. (1) by using creation and annihilation operators. For the simple harmonic oscillator (without the external force) write

$$
\hat{q}(t)=\sqrt{\frac{\hbar}{2 m \omega}}\left[\hat{a} e^{-i \omega t}+\hat{a}^{\dagger} e^{i \omega t}\right]
$$

and use commutation relations for \hat{a} and $\hat{a}^{\dagger}\left(\left[\hat{a}, \hat{a}^{\dagger}\right]=1\right.$, all other commutators are zero) to obtain Eq. (1).

