Homework Set No. 5, Physics 8808.01
 Deadline - Thursday, November 1, 2012

1. Time-ordered product of real scalar fields is defined by

$$
\mathrm{T} \phi(x) \phi(y)=\theta\left(x^{0}-y^{0}\right) \phi(x) \phi(y)+\theta\left(y^{0}-x^{0}\right) \phi(y) \phi(x)
$$

where ϕ 's are operators in Heisenberg picture.
a. (5 pts) In a free scalar field theory with mass m use Klein-Gordon equation along with the canonical commutation relations to show that

$$
\left[\partial^{2}+m^{2}\right] \mathrm{T} \phi(x) \phi(y)=-i \delta^{4}(x-y)
$$

where the derivative squared (the D'Alembertian) is taken with respect to 4-coordinates x.
b. (10 pts) Similar to what we did in class for retarded Green function, find an explicit expression for the Feynman propagator in coordinate space in a massless $(m=0)$ theory by performing the following integral

$$
D_{F}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)} \frac{i}{k^{2}+i \epsilon} .
$$

Is Feynman propagator causal?
2. Time-ordered product of Dirac spinors is defined by

$$
\mathrm{T} \psi_{\alpha}(x) \bar{\psi}_{\beta}(y)=\theta\left(x^{0}-y^{0}\right) \psi_{\alpha}(x) \bar{\psi}_{\beta}(y)-\theta\left(y^{0}-x^{0}\right) \bar{\psi}_{\beta}(y) \psi_{\alpha}(x)
$$

where $\alpha, \beta=1,2,3,4$ are Dirac indices. ψ and $\bar{\psi}$ are operators in Heisenberg picture.
a. (3 pts) In a free Dirac field theory with mass m use Dirac equation and canonical anti-commutation relations to show that (α^{\prime} is summed over)

$$
\left[i \gamma^{\mu} \partial_{\mu}-m\right]_{\alpha \alpha^{\prime}} \mathrm{T} \psi_{\alpha^{\prime}}(x) \bar{\psi}_{\beta}(y)=i \mathbf{1}_{\alpha \beta} \delta^{4}(x-y)
$$

b. (10 pts) Perform explicit calculation to show that the Feynman propagator for fermions is

$$
S_{F}(x-y) \equiv\langle 0| \mathrm{T} \psi(x) \bar{\psi}(y)|0\rangle=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)} \frac{i(\gamma \cdot k+m)}{k^{2}-m^{2}+i \epsilon}
$$

(We did much of this in class, but it is still useful to do by yourself.)
3. a. (3 pts) For a free real scalar field theory with mass m show that

$$
\begin{equation*}
[\phi(x), \phi(y)]=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)} \operatorname{Sign}\left(k^{0}\right)(2 \pi) \delta\left(k^{2}-m^{2}\right) \tag{1}
\end{equation*}
$$

where

$$
\operatorname{Sign}(x)=\left\{\begin{array}{rc}
1, & x>0 \\
-1, & x<0
\end{array}\right.
$$

Again ϕ 's are operators in Heisenberg picture, x and y are some coordinate space 4 -vectors.
b. (2 pts) Verify that Eq. (1) gives correct equal-time commutation relations for the fields

$$
[\phi(\vec{x}, t), \phi(\vec{y}, t)]=0
$$

c. (5 pts) Using Eq. (1) show that

$$
\left(\frac{\partial}{\partial x^{0}}[\phi(x), \phi(y)]\right)_{y^{0}=x^{0}}=-i \delta^{3}(\vec{x}-\vec{y})
$$

i.e., reproduce another one of the equal-time canonical commutation relations. Also show that

$$
[\dot{\phi}(\vec{x}, t), \dot{\phi}(\vec{y}, t)]=0
$$

reproducing the remaining canonical commutation relation.
4. (7 pts) Construct scalar electrodynamics following steps similar to what we did in class in deriving QED. First consider a complex scalar field theory with the Lagrangian

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi
$$

It is invariant under a global $U(1)$ symmetry: $\phi(x) \rightarrow e^{i \alpha} \phi(x)$ with α a real number. Gauge this Lagrangian by modifying it to have a local $U(1)$ symmetry

$$
\begin{equation*}
\phi(x) \rightarrow e^{i \alpha(x)} \phi(x) \tag{2}
\end{equation*}
$$

with the help of a new vector field A_{μ} which transforms as

$$
\begin{equation*}
A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \alpha(x) \tag{3}
\end{equation*}
$$

Finally add the Lagrangian density for the free vector field. What is the resulting Lagrangian? Show explicitly that it is invariant under the local $U(1)$ transformations given by Eqs. (2) and (3).

