Homework Set No. 6, Physics 8808.01 Deadline - Tuesday, November 20, 2012

1. Consider real scalar φ^{4}-theory described by the Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4!} \varphi^{4} .
$$

a. (7 pts) Draw all connected Feynman diagrams contributing to the two-point function

$$
\left\langle\psi_{0}\right| T \varphi(x) \varphi(y)\left|\psi_{0}\right\rangle
$$

at the order λ^{3}. (Connected $=$ no vacuum bubbles, no disjoint graphs.) Find the symmetry factors for all the graphs.
b. (10 pts) Draw all connected Feynman diagrams contributing to the four-point function

$$
\left\langle\psi_{0}\right| T \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right) \varphi\left(x_{4}\right)\left|\psi_{0}\right\rangle
$$

up to the order λ^{3}. Calculate the symmetry factors. (Again, connected $=$ no vacuum bubbles, no disjoint graphs.)
c. (3 pts) What is the symmetry factor of the following Feynman diagram?

2. Consider real scalar φ^{3}-theory described by the Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{3!} \varphi^{3} .
$$

a. (5 pts) Draw all connected Feynman diagrams contributing to the two-point function

$$
\left\langle\psi_{0}\right| T \varphi(x) \varphi(y)\left|\psi_{0}\right\rangle
$$

up to the order λ^{4}. Find the symmetry factors. (Connected $=$ no vacuum bubbles, no disjoint graphs.)
b. (5 pts) Draw all connected Feynman diagrams contributing to the three-point function

$$
\left\langle\psi_{0}\right| T \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right)\left|\psi_{0}\right\rangle
$$

up to the order λ^{3}. Calculate the symmetry factors. (Connected $=$ no vacuum bubbles, no disjoint graphs.)
3. (15 pts) For a free real scalar field theory with mass m find the following correlator

$$
G_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\langle 0| \mathrm{T}\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\}|0\rangle
$$

where x_{1}, x_{2}, x_{3}, and x_{4} are four different 4 -vectors. Without using Wick's theorem, express the answer in terms of the Feynman propagators

$$
\begin{aligned}
D_{F}(x-y) & =\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)} \frac{i}{k^{2}-m^{2}+i \epsilon} \\
& =\theta\left(x^{0}-y^{0}\right) D(x-y)+\theta\left(y^{0}-x^{0}\right) D(y-x)
\end{aligned}
$$

where

$$
D(x-y)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}} e^{-i k \cdot(x-y)}
$$

(Hint: I found it easier to first consider the case when the time-ordering is, say, $x_{1}^{0}>$ $x_{2}^{0}>x_{3}^{0}>x_{4}^{0}$, obtain the answer in this case, and then generalize to other time-orderings by considering permutations of arguments.)

