# Homework Set No. 7, Physics 8808.01 Deadline - Monday, December 10, 2012 

1. (35 pts) Problem 4.1 in Peskin and Schroeder. (Hints: Reading pp. 32-33 in Peskin and Schroeder first may help understand the problem. Assume that $j(x)$ is real. Each item is worth the following amounts of points: (a) -3 , (b) -5 , (c) -10 , (d) $-8,(e)-7$, (f) -2 .)
2. ( 20 pts ) Consider $2 \rightarrow 2$ scattering of identical particles of mass $m$. Suppose the production cross section of a particle with 4 -momentum $p$ is given by

$$
\mathcal{E}_{p} \frac{d \sigma}{d^{3} p}=f(s, t, u) \delta\left(s^{\prime}+t^{\prime}+u^{\prime}-4 m^{2}\right)
$$

where $f$ is some function of $s=\left(k_{1}+k_{2}\right)^{2}, t=\left(k_{1}-p\right)^{2}$, and $u=\left(k_{1}-p_{2}\right)^{2}$, with $s^{\prime}=\left(p+p_{2}\right)^{2}$, $t^{\prime}=\left(k_{2}-p_{2}\right)^{2}, u^{\prime}=\left(k_{1}-p_{2}\right)^{2}=u$ (see figure below). Just like in class $k_{1}^{\mu}=\left(E_{k_{1}}, \vec{k}_{1}\right)$, $k_{2}^{\mu}=\left(E_{k_{2}}, \vec{k}_{2}\right), p^{\mu}=\left(E_{p}, \vec{p}\right)$, and $p_{2}^{\mu}=\left(E_{p_{2}}, \vec{k}_{1}+\vec{k}_{2}-\vec{p}\right)$.


Show that

$$
\frac{d \sigma}{d t}=\frac{\pi}{\sqrt{s\left(s-4 m^{2}\right)}} f(s, t, u)
$$

where $u$ is now defined by $u=4 m^{2}-s-t$ and $s=\left(k_{1}+k_{2}\right)^{2}$ still. (Hint: it is easier to prove this result by picking either the rest frame of one of the initial state particles or the CMS frame.)
3. (15 pts) Problem 4.2 in Peskin and Schroeder. Lifetime $=1 / \Gamma$, where $\Gamma$ is the decay rate.

