Known Typos in the "Quantum Chromodynamics at High Energy" by Yu. V. Kovchegov and E. Levin

Preface

Page ix, line 8 from the bottom, "Chapters 6 through 9".

Chapter 1

Eq. (1.49) should read

$$
k^{\mu}=\left(k^{+}, \frac{\vec{k}_{\perp}^{2}+m^{2}}{k^{+}}, \vec{k}_{\perp}\right)
$$

Eq. (1.63): $g^{2} \rightarrow-g^{2}$.
Page 14, the line above Eq. (1.72), "on Peskin and Schroeder" \rightarrow "or Peskin and Schroeder".

Chapter 2

Eq. (2.3): we have neglected m_{e} compared to E and E^{\prime} in arriving at this formula.
Eq. (2.9): the right-hand side is missing $\frac{1}{2 m}$. This does not propagate.
Page 33, there is also a non-zero leading-order W^{++}component arising from $\gamma^{+}(\not k+q q) \gamma^{+} \approx$ $k^{+} \gamma^{+}$, etc. One should simply concentrate on $W^{i j}$ component calculated there.

Eq. (2.69): $\vec{k}_{j}^{2} \rightarrow \vec{k}_{j \perp}^{2}$.
Unnumbered formula between Eqs. (2.69) and (2.70) should read (typesetters error)

$$
\epsilon_{\lambda}^{\mu}\left(k^{\prime}-k\right)=\left(0, \frac{2 \vec{\epsilon}_{\perp}^{\lambda} \cdot\left(\vec{k}_{\perp}^{\prime}-\vec{k}_{\perp}\right)}{k^{\prime+}-k^{+}}, \vec{\epsilon}_{\perp}^{\lambda}\right) .
$$

Chapter 3

Page 76, last line of Sec. 3.1, $\sigma_{t o t} \sim s^{\text {const } \alpha_{s}}$.

Page 87, 3rd line below Eq. (3.39), drop a comma in $\left|\vec{x}_{1 \perp}\right|$.
Page 97, first line below Eq. (3.70), "clockwise" \rightarrow "counter-clockwise".
Eq. (3.127), $1 /\left(\alpha_{P}-1\right) \rightarrow-1 /\left(\alpha_{P}-1\right)$.

Chapter 4

Eqs. (4.13), (4.19) and (4.20) should have an overall minus sign on their right-hand sides.
Eqs. (4.40) and (4.42) should not have $(2 \pi)^{2}$ in the denominator (does not propagate).
Eq. (4.75) should include $\left.\sum_{\sigma, \sigma^{\prime}}\left|\Psi_{\sigma, \sigma^{\prime}}^{(0)}\left(\vec{x}_{10}, z_{1}\right)\right|^{2}\right|_{O\left(\alpha_{s}^{0}\right)}$ multiplying the right-hand side.
The first two terms on the right-hand side of Eq. (4.87) should have pluses instead of minuses in their arguments, that is, one should have $n\left(\vec{x}_{12}, \vec{x}_{1^{\prime} 0^{\prime}}, \vec{b}+\frac{\vec{x}_{20}}{2}, Y\right)+n\left(\vec{x}_{20}, \vec{x}_{1^{\prime} 0^{\prime}}, \vec{b}+\frac{\vec{x}_{21}}{2}, Y\right)$ in that equation.

Page 159, line 2 above Eq. (4.104): $d^{2} \rho=d \rho d \rho^{*} / 2$. (This does not propagate.)
Eq. (4.110): $E^{m, \mu} \rightarrow E^{m, \mu *}$.
Eq. (4.135): $\vec{r}_{\perp} \rightarrow \vec{x}_{\perp}$ (or vice versa) in two places.
Eqs. (4.169) and (4.170): $x_{\perp} \rightarrow x_{10}$.
Page 177, replace $\xi^{2} \rightarrow \xi^{2} / 2$ in Eqs. (4.172) and (4.173).
In Eq. (4.200), replace $\infty \rightarrow \infty$ (typesetters error).
Page 190, Fig. 4.36, first diagram after the equal sign, $l_{i} \rightarrow l_{j}$ for the right l_{i}
Same page, Eqs. (4.207) and (4.208), the Green function is normalized differently from the Green function in Eq. (3.58)

Page 196, problem 4.2, replace $x^{-} \rightarrow x^{+}$everywhere in line 5 of the problem.
Page 196, problem 4.5 (a), the initial condition should be $Z(Y=0, u)=u$.

Chapter 5

Replace $g \rightarrow-g$ in Eqs. (5.9), (5.10), (5.11), (5.12), (5.100), (5.102). Replace $g^{2} \rightarrow-g^{2}$ in Eqs. (5.17), (5.35), (5.37). Disregard the footnote on page 227 (or read it before Eq. (5.9)).

No physical observable calculated in Chapter 5 is affected.
Eq. (5.56) should have an extra 2 in the denominator on its right-hand side.
Page 214, line 3 after Eq. (5.56): " $x G$ is now IR finite"; page 214, line 4 after Eq. (5.56): "resulting in a finite net number of IR gluons".

Fig. 5.7: the dashed $\sim 1 / k_{T}$ line should approach the large- k_{T} asymptotics of the solid line from below.

Page 223, 3rd line below Eq. (5.90), "physic" \rightarrow "physics" (typesetters error).

Chapter 7

Eq. (7.2) should include ϕ_{0} on its right-hand side, that is, the right-hand side should read $\frac{e^{i k r}}{r} \phi_{0} f(\vec{q})$. The factor of ϕ_{0} on the right-hand side of Eq. (7.3) should be dropped.

Eq. (7.22a): multiply the right-hand side by N_{c}.
Eq. (7.22b): multiply the right-hand side by $N_{c}^{2} \int d^{2} b T^{2}\left(\vec{b}_{\perp}\right) / A^{2}$.

Chapter 8

Note that the cutoff Λ in Eq. (8.5) is assumed to be different (smaller) than the cutoff $\Lambda \approx \Lambda_{Q C D}$ used in the discussion in the two paragraphs following Eq. (8.5).

The exponential in Eq. (8.11) should read $e^{-i \vec{k}_{\perp} \cdot \vec{x}_{21}-i \vec{q}_{\perp} \cdot \vec{x}_{13}}$. In the integration measure, replace $d^{2} x_{0} \rightarrow d^{2} x_{1}$.

Eq. (8.15): $U_{\vec{x}_{2^{\prime} \perp}}^{b c} \rightarrow U_{\vec{x}_{2^{\prime} \perp}}^{\dagger}$.
Eq. (8.16): interchange $a \leftrightarrow b$.

Appendix A

Eq. (A.21): add $d x_{02} d x_{12}$ on the right-hand side.

Appendix B

The contours C_{1} and C_{2} in Fig. (B.2) should run counterclockwise.

Replace $s \rightarrow s^{\prime}$ on the right-hand side of Eq. (B.12); replace $u \rightarrow u^{\prime}$ on the right-hand side of Eq. (B.13).

