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Background

Since early days of quantum mechanics, spectroscopists fitted observed transition energies to
difference between level energies using the empirical expansion

E(w,J) = Y ¥ Yiu(lw+3) [JJ+1)]" (1)
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In 1932 Dunham showed that for an internuclear potential function expanded in the form
V() = ao (€)* {1 + a1 (&) + a (&) +as(6p)° -] 2

in which &p = (r—r¢)/re, the expansion coefficients Y;,, of Eq (1) were explicitly-known functions
of the potential energy expansion parameters:
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However, the complexity of those expressions grows rapidly with coefficient order (I + m), and with
few exceptions,! they saw limited practical use for the next half century. Then:

e By the 1980’s symbolic computer algebra had made it possible to work practically with almost
arbitrarily complicated functions.

e By the late 1980’s Ogilvie was reporting practical fits to data in which the fitting parameters were
not sets of freely varying expansion coefficients, but rather sets of Y7,, coeflicients constrained
to be inter-related by the Dunham expressions.

e By the early 1990’s, this led to direct-fit analyses in which the level energies were represented
by Eq. (1), but the parameters being varied were the potential function expansion parameters

(r—re)
(r+re)

! Noteworthy exceptions include work by Niay, Bernagen Coquant and Faytm in 1977 [Can. J. Phys. 55, 1929 (1997)] and by Maki and Lovas in the early
1980’s [J. Mol. Spectrosc. 95, 80 (1982) and ibid 98, 146 (1983)]

of Eq. (2) [usually expressed using the “Ogilvie-Tipping” variable &op = 2

instead of &p |.




A “direct-potential-fit” (DPF) analysis, in which the simulated transition energies are differences
between eigenvalues of a chosen analytic potential function, and the fitted quantities are parameters
defining that potential, can be performed in two ways.

e the eigenvalues and partial derivatives required for the least-squares fit may be obtained by
numerically solving the appropriate effective radial Schrodinger equation, or ...

e if the potential is expressed as a polynomial expansion, they may be obtained from analytic
expressions generated from symbolic computer algebra

However, on fitting exactly the same potential function model to exactly the same data set, these
two methods often gave conflicting results!

Dimensionless RMS deviations (dd) for fits to/predictions of
high resolution MW and IR data.

Ogilvie's algebraic fit ~ Coxon’s numerical fit

numerical RADIATOM
molecule 7 data result test result test
NaCl 1210 0.904 16.18 0.918 4.915
GeS 727 0.948 4.80 0.927 4.207
BrCl 883 0.940 9.35 0.939 19.029
LiH 594 1.103 45.0 1.085 182.6
GaH 1094 0.909 283.3 0.869 608.3

This talk shows that the source of these discrepancies 1s an undocumented truncation criterion
applied in Ogilvie’s algebraic data-analysis program, RADIATOM.



A Direct-Potential-Fit (DPF) Data Analysis simulates observed transition
energies by solving the radial Schrodinger equation for some assumed model potential, and optimizes
potential parameters to yield an optimum fit to the data.
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where Ven(r) is the “clamped nuclei” Born-Oppenheimer potential function,
B(r) = (me/My) QA (r) + (m./Mp) QP(r) the non—adiabatic kinetic energy BOB function
afr) = (me/Ms) RYr) + (m./Mg) RP(r)  the non—adiabatic centrifugal BOB function
AVaa(r) = (me/My) SA(r) + (me/Mp) SP(r)  the “adiabatic” potential energy correction

A more common working version of this equation is
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The objective of DPF data analysis is to determine the effective radial potential whose calculated

eigenvalue differences accurately reproduce all available data:

Ver(r) = Von(r) + AVu(r) + B(r)[E — Von(r)] + :

5l +alr) = BT+ )]

i.e., to determine the four radial functions Ven(r), AVua(r), «(r) and G(r).



Express these functions as power series expansions:
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Ogilvie’s algebraic approach solves the Schrodinger equation algebraically to obtain analytic
expressions for the level energies and their partial derivatives in terms of expressions for the
Dunham Y}, coeflicients, and uses them in a standard least-squares fit to data.

Coxon’s numerical approach solves the Schrodinger equation and fits to optimize the poten-
tial function parameters using standard numerical methods, applying the Hellman-Feynmann

¢U,J(T)>

theorem to calculate the required partial derivatives %ﬁ—;ﬂ = <¢U, 7(r) ‘%V‘*ng(”

Both approaches fit to determine values of a set of expansion parameters

iy = {ah o {uf} {7 {7 {6 {67}

and in principle, the two approaches should be equivalent and equally reliable!



Source of the Problem

The algebraic method starts with a radial Schrodinger equation in which the potential function is
represented by a polynomial expansion; in Ogilvie’s formulation:

VW)::%(&Hf{1+cﬂﬁﬂ)+Qﬂ&ﬁf+%3@0ﬂ?‘} with o1 = 2
Solving the Schrodinger equation algebraically yields

E(,J) = Y Y Y+ [J(J+1)]"
m=0 [=0
with Y),, = Y, (@, 7e, {¢;}) . Fitting transition energies to differences between level energies given

(r—re)
(r+ 1)

by this expression yields values of the potential expansion coefficients {c¢;} .

In a key methodology paper [J. Phys. B (At. Mol. Opt. Phys.) 27, 47 (1994)], Ogilvie stated:

“Following Dunham (1932) and the subsequent extension (Herman and Short 1968),
we express the vibration-rotational terms in the systematic form of a double summation

B = Y5 (Yu+ 2+ 230250 + 710} (0 + D I +1)] (8)
k=0 [=0
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in which we take enough terms coefficients to reproduce accurately the experimental data; ...

However, Ogilvie’s Radiatom program does not do this!
For a potential function which only involves potential coeflicients ¢; for which 7 < jpax , he truncates
the double sum in his Eq. (8) (above) to neglects all Y,,, coefficients for which

20+m — 2 > Jmax
This “Ogilvie truncation criterion” is the source of the apparent discrepancies between the “algebraic”
and “numerical” DPF methods.



Implications of the Ogilvie Truncation Criterion

For various choices of the highest-order non-zero potential expansion coeflicient ¢; , , this table
shows the Ogilvie-criterion cutoff points for the sums in the Dunham eigenvalue expansion.

e.g., oif ju.x =4, all Y}, coefficients for (I, m) combinations below the dashed line are ignored
oif j..=28,all ¥, coefficients for (I,m) combinations below the dotted line are ignored
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A possible rationalization?

“Dunham algebra” shows that a given Y7, coeflicient depends only on potential function expansion
coefficients ¢; for which 7 < jpax =2[+m—2. All Y}, coeflicients which could depend even
partially on ¢; terms not explicitly included in the potential, should be ignored.

My response:
If you do that, your Dunham expansion does not accurately represent the energy levels of the
potential defined by your non-zero {c;} coefficients!



Does this explain the algebraic vs. numerical discrepancies?

Test: Repeat the algebraic RADIATOM fits while forcing the algebra to include Y;,, coefficients
beyond the 2l+m—2 < jax limit!

highest-order potential coefft. highest-order BOB coefficient

case fitted algebra fitted by RADIATOM algebra dd(fit) dd(test)
NaCl (i) ¢4 = —0.258(19) c4 5t = —1.42(29) — t§! 0.906  16.222
() ¢4 = 0.315(16) Ce 5t = —1.43(29) — t§! 0.901  1.313

(43i) ¢4 = 0.340(16) cs it = —1.42(29) — t§! 0.920  0.924

(iv)  cq4 = 0.338(16) c10 it = —1.42(29) — t§! 0.921  0.924

(v)  cg =0.343(16) c10 i = —1.52(30) S £ 0.920  0.918

BrCl (i) ¢4 =4.05(4) cy SO =1.70(26) 5T = —0.49(10) 5, tor 0.936  9.136

i cy = 2.23(4 Cé s8' = 1.68(26) 8" = —0.52(10) sPr, & 0.938  1.642
( ) 0 0 0 0

(iv)  cg = 2.15(4) C10 sot = 1.67(26) 5" = —0.52(10) sbr, to* 0.940  1.339

(

(

(

(

(43i) ¢y = 2.16(4) cs sB' =1.67(26) t5F = —0.52(10) B, tBr 0.939  1.322

(

(

(

(v) ¢y =2.17(4) c10 sBr=1.73(27) t8' = —0.53(10) B, t&r 0.939  0.939
(




Conclusion:

1. If the Dunham-type power series it uses internally to represent the data
are truly summed to convergence, the algebraic method yields the same
results as numerical DPF methods.

2. Because of the “Ogilvie truncation criterion”, the radial functions
determined in all reported RADIATOM-based algebraic data analyses
are not the potential energy and Born-Oppenheimer breakdown functions
appearing in the radial Schrodinger equation the method starts from,
but merely internal functions which can reproduce the input data if used
in the (proprietary and not publicly available!) RADIATOM program.




Dipole Moments from Only Transition Energy Data?
Claims that dipole moments and rotational g-factors may be determined from fits to only tran-
sition energy data®? are based on the assumption that the leading expansion coefficients of the
centrifugal non-adiabatic Born-Oppenheimer breakdown term «(r) in the radial Hamiltonian (i.e.,
the coefficients ¢ and tf may be unambiguously and uniquely determined.

‘%“WTH%’M + [Vex(r) + AVaa(r)] dou(r) 3
# gl aCII + D]bealr) = vl

AVua(r) = (me/My) Z w! &+ (me/Mp) Z ub ¢

B(r) = (me/Ma) Z Sf’fj + (me/Mp) Z Sf 3

a(r) = (m./Mp) Z tffj + (me/Msp) Z tfgj

However, Watson had shown [J. Mol. Spectrosc. 80, 411 (1980)], that Eq. (3) can be transformed
into one involving two modified independent BOB function, which indicates that independent ;'
and t¥ values cannot be determined from fits to transition energies alone!

B B2 d* by 5 (T) h
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2J.F. Ogilvie, “Electric Polarity *BrCl~ and Rotational g Factor from Analysis of Frequencies of Pure Rotational and Vibration-Rotational Spectra”, J.
Chem. Soc. Faraday Trans. 91, 377 (1994).

3J.F. Ogilvie, “The Electric Polarity *GeS~ from Analysis of Only Frequencies and Wavenumbers of Pure Rotational and Vibration-Rotation Spectra”,
Mol. Phys. 88, 1055 (1996).



Numerical fitting with a modified version of Ogilvie’s RADIATOM program which extends the Dun-

ham sums to convergence showed that fits of equivalent quality could be obtained using alternate

parameterizations which did not involve any t;}

B
or t

coeflicients.

highest-order potential coeftt.

highest-order BOB coefficient

case fitted algebra fitted by RADIATOM algebra dd(fit) dd(test)

NaCl (v) ¢y = 0.343(16) c10 = —1.52(30) e ts! 0.920  0.918

(vi) ¢4 = 0.342(16) c10 = —7.(3)x10% e ug! 0.928  0.923

GeS (v) ¢4 = —0.206(25) C10 §¢ = 1.51(41) tie = —1.42(13) s, t§e 0.928  0.928
t5 = —1.85(8) t3

(vi) ¢y = —0.204(26) c10 §¢=3.1(3)x10° wuj =3.3(2)x105  w§e, ug 0.930  0.930

BrCl (v) c4=2.17(4) c10 sbT = 1.73(27) tBr = —0.53(10) set, t8" 0.939  0.939
s§t = 0.86(6) i = —0.66(1) st t§!

(vi) cq = 2.18(4) C10 udt = 1.3(2) x 105 u§! =1.25(4)x 105 ufr uf! 0.941  0.941

Conclusion:

significant ¢

3. Numerical fits using an extended version of Ogilvie’s RADIATOM program
confirm that fits to transition energies alone cannot determine physically

and t5
functions or rotational g factors.

values, and hence cannot determine dipole moment




