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Objectives of Spectroscopic Data Analysis

e Data reduction: to provide a compact and accurate representation of all available data.

e Interpolation: to provide a means of making reliable predictions for missing data within

the range of existing measurements.

e Extrapolation: to provide a means of making reliable (or at least plausible) predictions

beyond the range of existing measurements.

e Physics: to determine physically interesting parameters or properties of the system.

The present talk wall:
e present new very high resolution far-IR data for the ground states of CdH and CdD

e present a unified analysis of all available high resolution IR and far-IR data for 14 isotopomers
of CdH and CdD, which incorporates mass-scaled spin-rotation parameters



Previous High Resolution Mid-IR Work
“The ground state infrared spectra of several isotopic forms of the CdH and ZnH radicals”
R.-D. Urban, U. Magg, H. Birk and H. Jones, J. Chem. Phys. 92, 14-21 (1990).

o Measured 270 lines of the 1-0 and 2-1 bands of 8 isotopomers of CdH, with estimated line position
uncertainties of £0.001 cm™!.

e Performed both individual and combined(Cd)-isotopomer Dunham fits to the level energy expression
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— no Born-Oppenheimer breakdown coefficients were required.

“Diode laser spectroscopy of the four radicals CdD, ZnD, BaD and SrD in their 2% ground state”
H. Birk, R.-D. Urban, P. Polomsky and H. Jones, J. Chem. Phys. 94, 5435-5442 (1991).
o Measured 210 lines of the 1-0 and 2-1 bands of 6 isotopomers of CdD, with estimated line position

uncertainties of £0.001cm™!.

e Performed a unified 14-isotopomer Dunham-type analysis of their Mid-IR data for CdH and CdD which

included Born-Oppenheimer breakdown corrections (0y% and 81, ) for vibration and rotation
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Previous Very High Resolution Far-IR Work

“The isotopic dependence of the spin-rotation interaction: the rotational spec-
trum of cadmium hydride in its X 22" state” T.D. Varberg and J.C. Roberts, J. Mol.
Spectrosc. 223, 1-8 (2004).

e Frlensive measurements of pure rotational transitions in the v = 0 level of 6 iso-

topomers of each of CdH and CdD, with estimated line position uncertainties of ca.
+0.000 002 cm ™.

e Resolved and assigned both spin-rotation splittings and hyperfine structure due to the '*Cd,
13Cd, 'H and 2H nuclei.

o Performed a unified 12-1sotopomer Dunham-type analysis of thewr Mid-IR data for CdH
and CdD which included Born-Oppenheimer breakdown parameters (659 and 5(Ifm) for
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Their analysis treated all 12 isotopomers simultaneously, but considered only their pure rota-
tional v=0 data.



However ... they were not able to obtain an adequate fit unless

e independent 45§ (CdH) and §G{(CdD) B-O-breakdown parameters were introduced
(in addition to fitted 055 and 4, — &', values)!

e H- and Cd-atom B-O-breakdown parameters were introduced for treating the 2% spin-
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What was the problem ?

Since the data considered involved only pure 2500y v=2(CdD) /
rotational transitions with v =0, the analysis - /
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A fit to only the far-IR pure rotational data for
v = 0 levels of 6 isotopomers of both CdH and CdD gives physically realistic Y;; = c, values.

only v=0 — 2 all v=0-2
H4CATH parameter only v=0 far—IR data mid-IR data mid- & far-IR data
[cm™!] Varberg & Roberts  present  Jones & co-workers present
Yo 5.325411 (1) 5.442 (1) 5.44073 (12) 5.44676 (4)
Yia — —0.233 (2)  —0.22071(13) —0.2409 (1)
10* Ypo —3.1709 (1) —3.0934 (1) —3.101 (2) —3.126 (2)
10* Y7, — —0.1559 (3) —0.076 (6) —0.032 (6)
number of data 214 214 479 749
No. of non-HF parameters 19 16 19 31
DRMSD = dd 1.61 1.71 2.1 1.52
Conclude:

o A combined-isotopomer fit to pure rotational data for v=0 for hydrides and deuterides

should allow for v—dependence of the band-constant parameters!

o [f this v—dependence 1s neglected, achieving good fits to high quality data may require

introduction of spurious non-physical parameters.



New Far-IR Data for 8 Isotopomers of v=1 CdH & CdD

e Tunable far-IR radiation is generated by mixing light from two frequency-stabilized CO, lasers
with a tunable microwave amplifier

e Detector is a liquid-helium-cooled bolometer

e CdH or CdH generated in a discharge tube. Cd is placed in small depressions equally spaced
along the tube which is wrapped with heating tape and heated to about 480°C. A positive
column discharge (current 100 mA) is maintained as Hy (at ~ 0.4 Torr) or Ds (20% D9 in Ar at
~ 0.7 Torr) flows through the tube.
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Arbitrary absorption units

Use known hyperfine parameters to determine “hyperfine-free” far-IR transition energies, and fit all data to the
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Performing a combined-isotomomer fit
e to 275 far-IR data for 12 isotopomers with hyperfine splittings removed using parameters from single-
isotopomer analyses: typical uncertainties £0.000 005 cm™!
e plus 470 mid-IR data for 14 isotopomers: estimated uncertainties £0.001 cm™1),
e yielding a “dimensionless RMS deviation” of dd = 1.52.

yields the parameters (all in units cm™!) presented below.

“mechanical” B-O breakdown spin-rotation
Yio 1443.405 (5) oy 1.059(2)
Yoo —48.359 (4)
V3o —3.0222(9) 564 4.83(7)x107°
Yoa 5.44676 (4) o 467(3)x107% o1 0.62941(2)
Yi;  —0.2409 (1) o;  7.8(6)x107* v11  —0.04970 (9)
Yo1  —5.09(8)x1073 Y1 3.(1)x107*
Ys; —3.42(2)x1073 v31 —10.0 (6)x107*
Yoo  —3.126(2)x107*  4f,  1.9(2)x107° Yoo —1.6888(9)x107*
Yip —3.2(6)x1076 o1y —3.0(4)x107° Y12 —4.8(2)x107°
Yoo —11.2(3)x1076 Yoo —2.44(6)x107°
Yos 3.34 (7)x 1077 Sg —9.2(2)x 1071 Y3  9.6(3)x107°
Y1z —9.25(16)x107° v13 —4.5(6)x107?
You —8.(2)x10713 Yoa —2.2(6)x 10712

Yig —3.6(4)x10712

Future Work:

e Resolve problems with a few of the v = 1 pure rotation CdD data.
e Combine the mid- and far-IR data with electronic spectral data to generate a more comprehensive
unified description of this system.



