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Introduction

+ High-resolution electronic spectroscopy demands narrow-band  VUV     
radiation (< 200 MHz, ns pulses).

+ Resolution of VUV laser sources is limited by

a) bandwidth of primary sources in the NIR, IR, VIS or UV.

b) FT-limit of VUV pulses, G G  = 4ln(2)/p (10 ns º 88 MHz).n t

+ An all-solid-state VUV laser system with unprecedented resolution:

- broad and easy tunability.
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Bandwidth - is intrinsically restricted by the FT-limit

- may be augmented by adopting long pulses (ns - ms).

The route to VUV



+ NIR radiation bursts are generated by the pulsed diffraction        
side-band of an acousto-optic-modulator.

Realizing long seed pulses
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Amplifying pulses: Dye vs. Ti:Sa
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+ High pulse energies are required.

+ Long lifetime of population inversion implies low amplification factors.

nNIR

Pulsed seed beam, 
25 Hz, 0.2 nJ/pulse

npump

Nd:YAG 532 nm 
pump beam, 25 Hz, 

120 mJ/pulse 

Amplified seed beam

Ti:Sa crystal
37 x 7 x 10 mm

Amplifying long pulses



Pulse shapes 
at different 
stages in the 
amplification 
process:

Unamplified NIR pulsesUnamplified NIR pulses NIR pulses after 9 passesNIR pulses after 9 passes NIR pulses after 16 passesNIR pulses after 16 passes
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VUV pulses 

Time (ns)

V
U

V
 s

ig
na

l 
(a

rb
. u

ni
ts

) 17 ns

40 ns

0 10 20 30 40 50 60 70 80 9090 100
0

0



+ Frequency evolution during pulse:

            w = w  + j(t)  0

Cause:
+ Time dependant changes in refractive index:

           n(w,I) =n (w) + n I(t)  0 1

+   Extracting chirp from beat pattern with a slightly frequency detuned cw  
reference beam:

I(t) = I  + I (t) + cw p cw p2 I I (t)

 
sin(w t)

Assessment of possible chirp



The frequency evolution can be reconstructed from

- phase information obtained from frequency filtering  the FT of the heterodyne signal
  and subsequent inverse FFT. 

+ No measurable frequency chirp and a constant frequency shift of (-5 ± 2) MHz exists.

+ VUV pulses of 17 ns Û 50 MHz bandwidth.Û

30 ns pulse30 ns pulse 80 ns pulse80 ns pulse

BeatBeat

Frequency evolution (1s)Frequency evolution (1s)

Chirp measurement



3n1
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Application to atomic VUV spectroscopy
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Mass resolution of 
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Reducing Doppler-broadening by: 

- use of small skimmer and nozzle.

Reducing power broadening by:
     

- moderate VUV intensities.

0.5 mm dia. 
skimmer

0.13 mm dia.
skimmer

5 ´ less power
Lorentz fit

Gauss fit

131Xe

129Xe136Xe

Approaching the FT-limit



H  via R(1):2

the nd1  series1

n = 34

n = 35

n = 371.3 GHz

n = 36

Application to molecular VUV spectroscopy

Hyperfine structure in Rydberg states of  of H  and D :2 2
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+ Realization, characterization and application of a new high resolution     
-1 -1(0.003 cm  at 93000 cm , Doppler-limited), tunable all-solid-state VUV   

system was presented.

1 5 2
+ Measurements of the S  ® Xe 5p ( P )7d[3/2](J=1) resonance               0 3/2

revealed, for the first time, the hyperfine splittings of the I = 0 isotopes.

+ Measurements of the high lying nd Rydberg series of H  and D  have     2 2

been performed revealing hyperfine structure.

+ The narrow bandwidth and wide tunability attainable will enable the        
exploration of the finest details in VUV photochemistry and                     
photophysics.

 

Conclusion



Applications

High-resolution spectra of H  and D :2 2
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Bandwidth:

Ti:Sa (VUV): 100 MHz
PDA (UV):     125 MHz

Combined:   <200 MHz
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