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Objectives of Spectroscopic Data Reduction

To represent experimental data compactly within uncertainties.

e Should simultaneously treat all types of data (MW, IR, electronic), and
data for all isotopologues and multiple connected electronic states in a
single analysis.

To be able to interpolate reliably for missing observations within
the data range.

'To provide realistic predictions in the ‘extrapolation region’ outside
the data range.

o In effect, this presumes that the analysis provides a realistic global
potential energy curve.

To provide reliable estimates of physical interesting properties

e eg. 1., ., force constants, long-range potential coefficients

e cxpectation values, matriz elements and transition intensities.

{ Again, this presumes that the analysis yields a realistic global potential energy curve. }

e collisional and dilute (atomic) gas properties (e.g., virial coefficients)



Conventional Approaches

Band Constant Fits

e Represent level energies using an independent set of band constants
{G,, B,, —D,, H,, ...} foreach vibrational level of each isotopologue.

Problem: no extrapolation ability or vibrational interpolation ability!

Dunham-Type Fits

o Represent level energies as power series in (v +3) and J(J +1) :
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Problems: e wvery limited extrapolation ability

e the RKR method can generate a potential from the fitted {Y;o} and
{Yi1} constants, but it is based on the first-order semiclassical approx-
imation, which has limited accuracy for small-reduced-mass systems, &

e point-wise potentials are inconvenient to work with



Direct Potential Fiils

e Simulate level energies as numerically (or algebraically) determined eigenval-
ues of some parameterized analytic potential energy function V'(r;{p;}) .

e Partial derivatives of observables w.r.t. parameters p; required for fitting
are generated readily by the Hellmann-Feynmann theorem:
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e (Compare with experiment and iterate the least-squares fit to convergence.

Advantages
e satisfies all four ‘objectives of spectroscopic data reduction’!

e full quantum mechanical accuracy

e readily takes account of Born-Oppenheimer breakdown (BOB),
A-doubling, and/or %% splittings, in terms of radial strength functions

Challenge

e to develop flexible potential function forms which
% are robust and ‘well behaved’ (no spurious behaviour in extrapolation regions)

% can incorporate physical constraints and limiting limiting behaviour



Program DPotFit (‘Diatomic Potential Fits’)

{ available with manual from http://leroy.uwaterloo.ca/programs }

performs direct potential fits to spectroscopic data and can:

simultaneously treat any combination of microwave, infrared, electronic,
fluorescence series & photo-association data

for one or multiple isotopologues

for one or multiple electronic states

taking account of atomic-mass dependent Born-Oppenheimer breakdown effects
taking account of A-doubling of singlet states or ?Y splittings

can use “sequential rounding and refitting” to automatically yield fitted
parameters with a minimum number of significant digits and no loss of precision
in representing data

and can use Watson’s “robust” data weighting technique to damp the effect
of “outlier” observations which give anomalously large discrepancies with the
model, and might unreasonably mislead a fit.



Potential Function Forms

Polynomial expansion V(r)=cy& (1+ Y ,_, ¢; ) inradial variable
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Global Analytic Function such as

Expanded Morse oscillator (EMO) :
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in which  ¢(r) = ¢rmo(r) = D,y @i @@?V@. and  y,(r) =

Morse/Lennard-Jones oscillator (MLJ):
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and ¢ = @(r=00) with y,(r) defined as above.



The power p in the exrpansion variable y,(r) is very important!

o for p too small, most of the domain of y,(r) is outside the region where
the polynomial in y,(r) is determined, so polynomial may misbehave there!

o for p too large, y,(r) is too ‘flat’ in the outer parts of the data region to
allow a good fit to the data.
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Application to Ground-State Ny

Fit the best available data

[669 Raman data, 37 quadrupole, 525 electronic]

for all three isotopologues

[861 11N, data, 115 for "Ny & 245 for 15Ny ]

to EMO and ML.J model potentials

for various values of p
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RMS error dd for fits using various potential models.

exponent order: 4 5 6 7 8

EMO p=1 358 148 143 143 1.42
p=2 6.00 1.44 1.43 1.43 1.42
p=3 11.0 230 145 1.44 1.42
p=4 245 547 1.70 1.56 1.41
p=95 481 121  3.62 241 1.45

MLJ p=1 142 146 143 143 1.42
p=2 419 364 159 145 1.42
p=3 204 6.62 318 1.74 1.43
p=4 —  26.3 6.97 1.58 1.42
p=>5 — — — 297 11.6
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Behaviour of these Ny potentials outside the ‘data region’

A. At long range
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B. This means that as r — 00 .

the MLJ exponent — ¢, = In {2,0.(r%)/Cs} .

Cases p=1 & 2 extrapolate implausibly !
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Comparing with Experiment
Although MLJ4(8,8) model is preferred,
all 6 fitted potentials give very

similar predictions up to v &~ 50.

This approximate model independence attests

to the reliability of the predictions.
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Program DPotFit (‘Diatomic Potential Fits’)

{ available with manual from http://leroy.uwaterloo.ca/programs }

performs direct potential fits to spectroscopic data, but

it requires as input a realistic set of initial trial parameters!

Fortunately, they can readily be generated using

Program phiFIT

{ available with manual from http://leroy.uwaterloo.ca/programs }

which can fit any of the polynomial, EMO or MLJ forms discussed here
[ plus an additional form, the “double-exponential /long-range” ( DELR ) model]

to some set of approximate initial trial potential function values generated from

e an RKR calculation using Dunham {Y,} and {Y;;} from a ‘parameter-fit’
analysis

e ab initio calculations
e guesswork!

Thus, direct potential fitting of the type described here may now be considered to
be a “routinely” tool in a spectroscopists’ toolkit.



