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Spectroscopists’ traditional approach for diatomaics

e Represent level energies as power series in (v + %) and [J(J+1)] :
E(v, J) —T+ZZ Yim (0+3) [J(T+1)]"
m=0 1=0

e Use the semiclassical “RKR” method to determine a point—wise potential
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Yields a very precisely defined and smooth (& to machine precision) potential !

Problems:

o Very limited extrapolation ability.

e Since the RKR method is based on the first-order semiclassical

approximation, it has limited accuracy for small-reduced-mass systems.

e A potential defined as an irregular mesh of points, with distances specified

to many significant-digit, s inconvenient to work with !



Dairect Potential Fits
{Applied to 3-D Van der Waals molecules since 1974, and to diatomics since ~ 1990 }

e Simulate level energies as numerically (or algebraically) determined eigenvalues

of some parameterized analytic potential energy function V(r;{p,}) .

e Partial derivatives of observables w.r.t. parameters p; required for fitting are

generated readily by the Hellmann-Feynmann theorem:
OF (v, J OV (r:{p;
( ) _ <¢1)7J a( {p]}) ‘¢U,J>
Dj

8pj
e (Compare predicted transition energies with experiment, and optimize the

potential parameters via an iterative least-squares fit.

Advantages

e allows realistic predictions in ‘extrapolation’ region outside the data range,

and hence also allows prediction of collisional properties
e vields full quantum mechanical accuracy

e readily takes account of Born-Oppenheimer breakdown (BOB),
A-doubling, and/or *% splittings, in terms of radial strength functions



Challenge ... to develop analytic potential function forms which

 are flexible enough to fully represent all available (high-resolution) data
% are robust and ‘well behaved’ (no spurious behaviour in extrapolation regions)

* Incorporate appropriate physical constraints and limiting behaviour

Three Types of Potentials

1. Polynomial expansion V(r)=cy& (1+Y ,_; ¢ &) in variable:

A ) ) r—7Te
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g ppmg - Lot = T g1t + by
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e Tiemann et al. =
<1 r+br.

Problems associated with such polynomial potentials ... ...

e cood fits require a relatively large numbers of terms
e polynomials generally behave badly outside the ‘data region’

e realistic inverse-power long-range behaviour can only be be imposed by

attaching an inverse-power function at some ad hoc chosen distance 74y,



. Spline-Point-wise Potentials

e potential in ‘data region’ is cubic spline function on a selected radial mesh:

potential-fit parameters are energies of those spline points

e attach an inverse-power long-range tail at some chosen outer bound 7.,

. Coxon-type Global Analytic Potentials based on Morse Form
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but 1t sometimes gave problems ...




However ......
e replacing the simple polynomial for exponent coefficient F(r) by an

expansion in a radial variable which is well-behaved on the whole interval
r? —ort

Yp(r) = . - suppresses unphysical extrapolation behaviour!
P — T,

e defining Q(r) appropriately yields a potential with proper inverse-power

long-range behaviour

Morse/Long-Range (MLR) Potential

If we define urr(r) = Con, + Cm + ... we can write
ri e
2
ur R (7
V() = D. {1 — (uLL;{((r ))) —¢(T>yp(r)}
m> e 2D, e 900 Cny Cony
7 e [ urgr(re) ]ULR(T) = e - e pmy

in which ¢ = d(r=00) = In{2D./urr(r.)}
and qb(?“) = quLR(?“) = Poo yp( ) 1— yp Z i yp

This model has recently been applied to analyses of data for No(X 12;) . for
KLi(a’%%) and for Cay(X 'SF).



Tiemann polynomial
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Spline point-wise potential

D 1102.060

Cs  1.0023x107

Cs 3.808 x 108

010 5.06 x 109

r/A U/em™? r/A U/em™?
3.096980 9246.6895 5.678571  636.3741
3.188725 6566.7325 5.809524  684.9589
3.280470 4525.7282 5.940476  728.9235
3.372215 3090.9557 6.071429  768.5976
3.463960 2134.2175 6.202381 804.2551
3.595705 1475.2425 6.333333  836.2419
3.647450 1004.5043 6.464286  864.8746
3.739195 661.4123 6.595238  890.4666
3.830940 410.6117 6.726191  913.2923
3.922685 234.0001 6.857143  933.6417
4.014430 116.0996 6.988095 951.7718
4106174  44.5437 7.119048  967.8632
4.197920 8.6885 7.250000  982.2159
4.289664 0.1760 7.500000 1005.2497
4.381409  11.9571 7.750000 1023.6698
4.500000  48.5948 8.000000 1038.3262
4.630952 106.9081 8.358974 1054.3861
4.761905 175.7311 8.717949 1066.0579
4.892857  248.8199 9.076923 1074.5969
5.023809  322.3873 9.435897 1080.8961
5.154762  393.7222 9.794872 1085.5974
5.285714  461.4555  10.303419 1090.2990
5.416667 524.6311  10.811966 1093.5160
5.047619 582.9870  11.611111 1096.6870
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533.
—150.




Behaviour of MLR potentials outside the ‘data region’
e.g., consider Ny(X 'S})
We can write the overall potential as

Cg'(r)
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Criterion for the best model!
Hence, a plot of C¢t(r) vs. 1/r?
should approach
e an intercept of Céheory

e with a slope of Cgheory

from above !



Behaviour of MLR potentials outside the ‘data region’

e.g., consider Ny(X 'S})
We can write the overall potential as

Cg'(r)
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Since at long range

Cg'(r) = r°[D = V(r)]
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Criterion for the best model!
Hence, a plot of C¢t(r) vs. 1/r?
should approach
e an intercept of Céheory

e with a slope of Cgheory

from above !

L 1T T T T | T 1 LI [ U R R I B / I
6 ST
r'[D-V(r)] /o
5000001 (6.8) ya .
L et e " N,data _
400000

300000

200000

fodoo | [ MLR(@)
EMO,(7)
MLJ, (6)

0 R T T N AN T T T N T T N

0.0 0.2 1772 0.4 0.6

0.



Consider the A('X]) state of Liy

e ['T" absorption & emission, laser excitation & PAS data span 99.9965% of well:
highest observed levels bound by ~ 0.36 cm™

e extensive data for both “"Liy and %%Lis

Cs Cg C
e long-range potential has foom V(r) ~® — ; — 66 — ; — ...
o by

and the (), coefficients are known from theory:.

o Meluville & Coxon [JMS 235, 235 (2006)] determined an analytic MLR-type
potential with only onee constrained long-range term (C5/r?), which represents

all data up to 2.6 cm™! from dissociation.

What’s the problem 27

e their potential cannot accurately represent data for highest observed levels

e the asymptote of their potential function lies between the two physical

asymptotes for Li(>S) + Li(*Pyj) and Li(*S) + Li(*Py)»)



What causes this problem 27
The small (0.3353 cm™) spin-orbit splitting between Li(*Py2) and Li(*Ps)
asymptotes enhances mixing between the A(!XF) state correlating with the lower

asymptote and the b(°II,) state correlating with the upper asymptote.

e at very large r, Hund’s case (¢) coupling is appropriate
e at moderate distances r, Hund’s case (a) coupling is appropriate
e the long-range coefficients differ for these two cases!

e Melville-Coxon analysis considered only data in the “Hund’s case (a) domain”,
and their potential form cannot incorporate the distance-dependent variation of

the C,, coefficients from one case to the other

What’s the solution 27



The Solution !!

1. M. Aubert-Frécon and co-workers showed that in the long-range region where
this coupling becomes important, the overall interaction energy associated with

the 07 (1) and OF(°II) states is given by the 2 x 2 matrix
_ Z Cu('S5) +2C0 (1) \/_Z 1E+ C(3HU)

3rn

c,('=H) - ¢, (11, c,('=h) - ¢, (11,
gzn ( )W( ) AESO—ZnQ @) (“1Ly)

3rn

where C,,(*¥F) and where C,(°*II") are the potential function coefficients in

the “Hund’s case (a) domain”:

Cy(1nh) =2 (e =

20R01—|—22R12
45

5R01—|—19R12
45

2
C5(*11,) = 4 Co(*I1,) =
o M’ = |(25|qel|2p)|2 is the squared atomic dipole 2p — 2s matrix element

o I%y; and Rjs are atomic matrix elements defining the leading contribution

to the dispersion energy:.

e and the overall inverse-power coefficients in the diagonal terms

are the coefficients in the limiting “Hund’s case (¢)” domain.



2. Analytic diagonalization of this 2x2 matrix gives attractive effective adiabatic

long-range potentials for the two state which approach the correct limits!

AFE;, M* 150 Ry 1 + 82 Ry o]

LR > X 180 70
1 M? 5 Ry1+ Rys 2
+ — — ’ — — AFE,,
2 { (9 5 4516
1/2
LS (M [BRyt Ry 7
9\ 373 1576

3. Using this expression in the standard definition of the MLR potential

Vure(r) = 9, {1 _ (“LR(T) ) o= (7)) }2

urr(Te)

gives a global analytic potential which incorporates the transformation from

Hund’s case (a) to Hund’s case (¢) with increasing r .

Parameters defining this potential are: ®., r., M?, Ro1, Roy and the ¢

expansion coefficients defining the exponent factor ¢(r).



Results for A('S}) state Lio

Analysis incomplete ... but ...

e good fit for ""Li, data up to v=92

[(D — Ey—99)=0.84 cm™! |

e ‘limiting behaviour’ plot extrapolates

to C’gase(a) and approaches

limiting slope Cg "

(a)

from above.
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Analysis incomplete ... but ...

e good fit for ""Li, data up to v=92
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e However ... expanding the
scale in the large—r region shows

a change of character!
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Analysis incomplete ... but ...
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