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What 1s the Problem ?

For levels lying near dissociation:

e the wavelunctions extend across an

immense and very asymmetric domain

e wavefunction amplitude changes very

dramatically across that domain
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What 1s the Problem ?

For levels lying near dissociation:

e the wavelunctions extend across an

immense and very asymmetric domain

e wavefunction amplitude changes very

dramatically across that domain

As a result, when solving the radial

Schrodinger equation for such levels:

e No basis set method will work!

e Numerical integration with a mesh size
suitable for small distances will require

extremely large radial arrays!

e This very large number of integration
mesh points makes calculations

for such levels quite CPU intensive!
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Why does 1t matter ?



What 1s the Solution ?

Start from the conventional radial Schrodinger equation
d*(r)
dr?

If we now map the radial coordinate r € [0, 00)

= —Q(r)¥(r) in which Q(r) = % E—U(r)]

e onto a new radial variable with a finite domain y = y(r) € [a,b] , and
. B _ dr(y)
e make the substitution ¢ (r) = \/g(y) ¢(y) where g¢g(y) = ¥
Y

e our differential equation becomes

d¢(y 5 S 5

Sl = —0we) i Q) = oy Q) + F)

q" 3 /(¢ 2
and both ¢(y) and F(y) = Sy (—) depend only on the definition
9 9

of the variable mapping.

Our new differential equation in y can readily be solved using ezxactly the same

array of techniques used for treating the conventional equation in r !



How do we define the variable mapping ?

There are many possibilities,” but a particularly convenient choice is

/’,.04_770[

re + re

y(r) =

where « is a positive real number and 7 a fixed reference distance.

With this choice. the domain [a,b] = [—1, +1] and
) = dr(y) 27 (1+y)é‘1 o (rr )
I\Y) = dy  « (1_y)g+1 - 2a 7 o]
_ 1
F(y) = i

We test our new procedure by applications to a set of 15-level model LJ(2n,n)

7"6 2n 7"6 n )
potential energy functions Vi j(r) = D, [(—) — 2 (—) with parameters
r r

chosen so that the highest level is extremely weakly bound.

" Three others are:  y(r) =1 —exp(—ar?) , y(r) = exp{—exp[a(r —7)]} , and y(r) = arctan{a(r —7)} .
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For the same LJ(8,4) potential considered in slide #2, we find (with o =1, 7 =1, )

E,(v=14)/D_=-1.30x10"°
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How to select parameter mapping variables o and v ?

«

r¢ —r,“

Tests show that 7 has little effect, so focus on « in the mapping: y = — g
re 47,

For Numerov wavefunction propagation, with mesh size h , the eigenvalue error

oty e
AENum(h) — ﬂ(%)/a d—y dy | | | 4

For fixed h, vary a to minimize error for

each level of our model LJ(2n, n) potentials.
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How to select parameter mapping variables o and v ?

«

r¢ —r,“

re“—+r.°

Tests show that 7 has little effect, so focus on «a in the mapping: y =

For Numerov wavefunction propagation, with mesh size h = dy, eigenvalue error

For fixed h, vary a to minimize error for

16
14}
each level of our model LJ(2n, n) potentials. 12}
10}

but " E

e CPU intensive to optimize «a for

each level

e matrix elements calculations require use

of same mesh h and a for all levels o—ttt—t—g—

e something funny happens for the

very last level if n =6, 5 or 4.

Hence, need a general rule for all levels of all systems!



Recall: all intermolecular potentials have the limiting long-range form

Ur) ~ ® —C,/r" with (except for ion-pair states) n =6, 5, 4 or 3.

Semiclassical arguments show that for levels lying very near dissociation,

over most of the classically allowed region between the turning points

@(y) ~ {constant} if a = g_l

With this choice of a the nodes of those wavefunctions ¢,(y) should be

approximately equally spaced — the optimum situation for efficient calculation.



LJ(12,6)
v=14

| E,/D,=4.77x10"°
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But what about the funny behaviour of a°P* for the very last level?
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The behaviour of the ‘curvature factor’ Q(y) as y — 1 explains the abrupt
drop-off of " for the very last level (for n =4 — 6). In that larger-y region
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The behaviour of the ‘curvature factor’ Q(y) as y — 1 explains the abrupt
drop-off of " for the very last level (for n =4 — 6). In that larger-y region
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and accelerates wavefunction die off.



Conclusions for Bound State Calculations

e The present method makes it very straightforward to treat levels lying extremely
close to dissociation, which would have been virtually impossible to treat other-

wise.

le.g., the last level of a 301-level LJ(6,3) potential with outer turning point at
7“/7“6 = 1107853 and binding energy Eb/@e — 1.5%10718 ]

e The compact range and modest array sizes required make this method much

more economical than conventional procedures, w.r.t. both array storage and

CPU time.

e All ‘tricks’ associated with existing methods — such as inclusion of a centrifugal
potential and locating and determining widths for tunneling predissociation level

are readily implemented.

e As a default, set a=5—1.

If need higher accuracy for very last level of a potential

with a — C,,/r" long-range tail for n =4 — 6, use a=0.9.



Zero Energy Collision Properties: Scattering Lengths

The scattering length of a given potential is the distance a defined by the asymp-

totic form of the radial wavefunction at zero collision energy:

Y(r) ~ A(r—a)

A conventional calculation integrates ((r)

to very large distances (e.g., 7 ~ 100 — 1000 )

and then fits it to this expression.

{ very tedious; accumulates truncation error}

- scattering scattering
| length =-16.009 length = 23.729
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Zero Energy Collision Properties: Scattering Lengths
The scattering length of a given potential is the distance a defined by the asymp-

totic form of the radial wavefunction at zero collision energy:

Y(r) = A(r—a)

- scattering scattering -
| length =-16.009 length = 23.729

A conventional calculation integrates ((r) X

to very large distances (e.g., r ~ 100 — 1000 ) ~s

and then fits it to this expression. -

{very tedious; accumulates truncation error} L 112
| v(N=o)/aly)

In our method we merely -10 o, /relo 20 30 20

e propagate ¢(y) to y =1 -
e transforms ¢(y;) at the preceding

D,=2830cm™

two mesh points to ¢ (r(y;))
e fits those ¥ (r(y;)) values to

the limiting expression b, = 3230

e always use a =1 for calculating

. . . ,-0.2 0 0.2 04 0.6 0.8 1
properties at zero collision energy ! y




Lennard-Jones (12, 6) potential with De= 3761.000(cm-1) Re 1.000000(A)

y mesh: h= 0.00025

Calculate SL= 2.42482642D+02 from wavefx at R= 7997 .500 3998.250
y= 0.999750 0.999500
Calculate SL= 2.42482642D+02 from wavefx at R= 15996.000 7997.500
y= 0.999875 0.999750
Calculate SL= 2.42482642D+02 from wavefx at R= 31993.000 15996.000
y= 0.999932 0.999875

y mesh: h= 0.00005
Calculate SL= 2.42483081D+02 from wavefx at R= 39998.300 19998.650

y= 0.999950 0.999900
Calculate SL= 2.42483081D+02 from wavefx at R=  79997.600 39998.300
y= 0.999975 0.999950

Calculate SL= 2.42483081D+02 from wavefx at R= 159996.200 79997 .600
y= 0.999987 0.999975



