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What is a ‘scattering length’, and Why do we care ?

• In the study of ultracold gases, the collisional properties of slow atomic collisions

is a central concern.

• In the limit of zero kinetic energy, the collision cross-section for a gas of atoms

of mass m = 2μ is σ = 4π as
2 where as is the S-wave scattering length.

• Scattering theory tells us that the scattering length is defined as

as =

{
lim
k→0

1

k
cot[ηs(k)]

}
where ηs(k) is the S-wave scattering phase shift at collision wavenumber

k =
√

2μE/�2 for collision energy E .
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But what is a
‘scattering phase shift’ ?
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Ans: the asymptotic shift

in phase (in radians) between

the actual continuum wavefunction

and the phase that wavefunction

would have if V (r) = 0 .



Calculating a scattering length from phase shifts would (at best) be tedious, since:

• at every energy E we must propagate the wavefunction to very large r (to

where the potential is negligible), before comparing it with the zero-potential

solution to determine the phase difference

• this must be repeated at a sequence of ever-lower energies, and the result

extrapolated to E = 0 (or k = 0 ) to obtain: as =

{
lim
k→0

1

k
cot[ηs(k)]

}
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A simpler definition of a ‘scattering length’ !

Theory also tells us that the asymptotic behaviour of the continuum wavefunction

in the limit E → 0 becomes ψ(r) � (r − as) .

Question: How can a wavefunction be linear ?

Ans. The conventional radial Schrödinger equation is

d2ψ(r)

dr2
= −Q(r)ψ(r) in which Q(r) = − 2μ

�2
[E − V (r)]

At the continuum threshold E = V (r=∞) = 0

so at very large r this equation becomes simply:
d2ψ(r)

dr2
= 0

and its ‘normalized’ solution is ψ(r) = (r − as)



Consider the Schrödinger equation solution at E = V (r=∞) = 0

for an LJ(12,6) potential with depth De = 960 cm−1 which supports 7 bound levels
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Since asymptotically ψ(r) � (r − a) , extrapolating back from the limiting

long-range region gives as as the intercept. Then on making the well deeper . . .
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Consider the Schrödinger equation solution at E = V (r=∞) = 0

for LJ(12,6) potentials with depth De = 960 , 980 & 990 cm−1 . . .
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Consider the Schrödinger equation solution at E = V (r=∞) = 0

for LJ(12,6) potentials with depth De = 960 , 980 , 990 & 1021.5 cm−1 . . .
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Consider the Schrödinger equation solution at E = V (r=∞) = 0

for LJ(12,6) potentials with depth De = 960 , 980 , 990 , 1021.5 & 1080 cm−1
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Thus, • calculate the E=0 wavefunction out to very large distance

• extrapolate linearly back to the intercept to get ηs



What is the Problem?

When solving the radial Schrödinger equation at E = V (r=∞) = 0 :

• the wavefunctions extend across an infinite domain

• wavefunction amplitude and oscillation rate changes very dramatically across

that domain !

As a result, when solving the radial Schrödinger equation at energy E = V (r=∞) = 0

• No basis set method will work!

• Numerical integration with a mesh size suitable for small r will require

extremely large radial arrays!

• This very large number of integration mesh points makes such calculations

quite CPU intensive!

• Truncating the radial integration at some finite distance will introduce problems.



What is the Solution ?

Start from the conventional radial Schrödinger equation

d2ψ(r)

dr2
= −Q(r)ψ(r) in which Q(r) =

2μ

�2
[V (∞) − V (r)]

If we now

• map the radial coordinate r ∈ [0,∞) onto a new radial variable with a finite

domain: y = y(r) ∈ [a, b]

• and make the substitution ψ(r) =
√
g(y) φ(y) where g(y) ≡ dr(y)

dy

• our differential equation becomes

d2φ(y)

dy2
= − Q̃(y)φ(y) in which Q̃(y) = − g(y)2 Q(r(y)) + F (y)

where both g(y) and F (y) ≡ g′′

2g
− 3

4

(
g′

g

)2

depend only on the definition

of the variable mapping.

Our new differential equation in y can readily be solved using exactly the same

array of techniques used for treating the conventional equation in r !



How do we define the variable mapping ?

Many possibilities, but two particularly convenient choices are

y(r) =
r − r̄

r + r̄
or y(r) =

2

π
arctan

{
α

( r
r̄
− 1

)}
where α is a positive real number and r̄ a fixed reference distance.

With these choices the domain [a, b] = [−1, +1] and

g(y) ≡ dr(y)
dy = 2r̄

(1−y)2
F (y) = 0

}
or

{
g(y) = π r̄

2α cos2(π y/2)

F (y) = π2/4

After making this transformation, we can solve the radial Schrödinger equation on

the entire interval y ∈ [−1, +1] ( r ∈ [0, ∞] ) using any standard method !

Then examination of the solution φ(y) at y ≈ 1 allows us to either:

• convert φ(yi) at two of the outermost mesh points to ψ(ri) =
√
g(y) φ(yi) , and

extrapolate ψ(r) � (r − a) back to determine the intercept of r = as or

• use the log-derivative of φ(yi) at y = 1 to give

as = r̄

[
1 +

2

π α

d ln φ(y)

dy

]
y=1
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Compare the E = 0

solutions ψ(r) and φ(y)

for LJ(12,6) potentials with

a range of well depths.

• Instead of having to

integrate ψ(r) out to

very large distances,

• integrate φ(y) out to

y=1 and use its behaviour

there to determine as .

• This is a ‘routine’ type of

calculation which can be

performed using any

standard bound-state code !

• Easily achieve accuracy

of � 9 significant digits



The same transformation greatly simplifies calculations for bound states:

e.g., for a 15-level LJ(8,4) potential: [see Phys.Rev. A 78, 052510 (2008)]

Eb(υ=12)/De =−0.00064

↑
φ12(yp)

Eb(υ=9)/De =−0.0183
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Hence . . . using this approach to solve the radial Schrödinger

equation for bound states of one potential and at the asymptote of

another allows routine calculation of photoassociation absorption

intensities !

These capabilities will be incorporated in the next release of program LEVEL

[ see http://leroy.uwaterloo.ca/programs ]
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