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What 1s a ‘scattering length’, and Why do we care ?
e In the study of ultracold gases, the collisional properties of slow atomic collisions
is a central concern.

e In the limit of zero kinetic energy, the collision cross-section for a gas of atoms

2

of mass m=2u is o =4mwas" where ag isthe S-wave scattering length.

e Scattering theory tells us that the scattering length is defined as

0 — {hm E cot[ns(k)]}

E—0 k

where 1n4(k) is the S-wave scattering phase shift at collision wavenumber

k=+/2uE/h? for collision energy E .
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where 1n4(k) is the S-wave scattering phase shift at collision wavenumber
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Calculating a scattering length from phase shifts would (at best) be tedious, since:

e at every energy E we must propagate the wavefunction to very large r (to
where the potential is negligible), before comparing it with the zero-potential
solution to determine the phase difference

e this must be repeated at a sequence of ever-lower energies, and the result

1
extrapolated to £ =0 (or k= 0) to obtain: a, = {%ir% Z cot|ns(k)] }
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A simpler definition of a ‘scattering length’!
Theory also tells us that the asymptotic behaviour of the continuum wavefunction

in the limit £ — 0 becomes (r) ~ (r — as) .
Question: How can a wavefunction be linear ¢

Ans. The conventional radial Schrodinger equation is

d’ 2
O _Quel) ik Q)= — 4B - V(1)
At the continuum threshold F =V (r=00) =0
d2
so at very large r this equation becomes simply: dwz(’r) = ()
r

and its ‘normalized’ solution is ¥ (r) = (r — as)



Consider the Schrodinger equation solution at E =V (r=00) =0

for an LJ(12,6) potential with depth ®, = 960 cm™! which supports 7 bound levels

y(r)

D, =960
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Since asymptotically (r) ~ (r —a) , extrapolating back from the limiting
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long-range region gives a, as the intercept. Then on making the well deeper . . .
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Consider the Schrodinger equation solution at E =V (r=00) =0
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Consider the Schrodinger equation solution at E =V (r=00) =0
for LJ(12,6) potentials with depth ®, = 960, 980, 990, 1021.5 & 1080 cm™*
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Thus, e calculate the E=0 wavetunction out to very large distance

e cxtrapolate linearly back to the intercept to get n;



What 1s the Problem ?
When solving the radial Schrodinger equation at £ =V (r=o00) =0 :

e the wavefunctions extend across an infinite domain

e wavefunction amplitude and oscillation rate changes very dramatically across

that domain !

As aresult, when solving the radial Schrodinger equation at energy E = V(r=o00) =0

e No basis set method will work!

e Numerical integration with a mesh size suitable for small r will require

extremely large radial arrays!

e This very large number of integration mesh points makes such calculations

quite CPU intensive!

e Truncating the radial integration at some finite distance will introduce problems.



What s the Solution ?

Start from the conventional radial Schrodinger equation

D= Qe nwhid Q)= V() - V()
If we now

e map the radial coordinate r € [0,00) onto a new radial variable with a finite

domain: y = y(r) € |a, ]

e and make the substitution ¥ (r) = \/g(y) ¢(y) where g(y) =

e our differential equation becomes

d*¢(y)
dy?

~

= — Qv(y) o(y) in which Qly) = — g(y)2 Q(r(y)) + F(y)

" 3 I\ 2
where both g(y) and Fl(y) = g— -3 (g_) depend only on the definition
g g
of the variable mapping.
Our new differential equation in y can readily be solved using exactly the same

array of techniques used for treating the conventional equation in r !



How do we define the variable mapping ?

Many possibilities, but two particularly convenient choices are

y(r) = T_T or y(r) = zarctaun{oz(i—l)}
r+r m r
where « is a positive real number and 7 a fixed reference distance.
With these choices the domain |[a,b] = [—1, +1] and
g<y> = d?c’l(yy) — (137;)2 } or { g<y> ~ 24 Cogg(:ry/g)
F(y) = 0 F(y) = m*/4

After making this transformation, we can solve the radial Schrodinger equation on

the entire interval y € [—1, +1] (7 € |0, oo] ) using any standard method !

Then examination of the solution ¢(y) at y ~ 1 allows us to either:

e convert ¢(y;) at two of the outermost mesh points to ¥ (r;) = /g(y) ¢(y;) , and

extrapolate (r) >~ (r — a) back to determine the intercept of r =as;  or

e use the log-derivative of ¢(y;) at y =1 to give

2 dln oly)
Ta dy

a;, = 1|1 +
y=1



Compare the =10 a,=-2.730

solutions ¥ (r) and ¢(y) a,=—4.930 ‘ a,=-0.341
for LJ(12,6) potentials with _ T ....... l RN
a range of well depths. ' Tl D, = 1080
, | 2 =-1651.2 .::"';;’,’. D, =1021.5 |
e [nstead of ha\/lng to _....a.s ..... 5 ...................... :.‘,'.'.... .......................
integrate ¢<T) out to w(r) =V2() 00y) . RN
very large distances, ¢ ~
[ D, = 960 .
e integrate ¢(y) out to 5.0 00,/ 50 10.0

y=1 and use its behaviour — 71—

there to determine a; .

o This is a ‘routine’ type of
calculation which can be
performed using any

standard bound-state code !
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e Fasily achieve accuracy

of 29 significant digits




The same transformation greatly simplifies calculations for bound states:

e.g., for a 15-level LJ(8,4) potential:
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[see Phys.Rev. A 78, 052510 (2008)]
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Hence ...

using this approach to solve the radial Schrodinger

equation for bound states of one potential and at the asymptote of

another allows routine calculation of photoassociation absorption

intensities !

These capabilities will be incorporated in the next release of program LEVEL

|see http://leroy.uwaterloo.ca/programs |
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