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Objectives of Spectroscopic Data Analysis
. To provide an accurate, compact, and comprehensive

representation of experimental data.

. To be able to interpolate reliably for missing observations within

the data range.

. To be able to provide realistic predictions in the ‘extrapolation

region’ outside the range of existing data.

. To provide reliable estimates of physically interesting molecular

properties (e.g., bond lengths, force constants, intensities).
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1. To provide an accurate, compact, and comprehensive

representation of experimental data.

2. To be able to interpolate reliably for missing observations within

the data range.

3. To be able to provide realistic predictions in the ‘extrapolation

region’ outside the range of existing data.

4. To provide reliable estimates of physically interesting molecular

properties (e.g., bond lengths, force constants, intensities).

Since the dawn of quantum mechanics, the central paradigm of
spectroscopic data analysis has been to explain the patterns of

observed transition energies in terms of expressions for molecular
level energies as functions of vibrational and rotational quantum

numbers.



Traditional Methods for Representing Spectroscopic Data

A. ‘band constants’ — a set of vibrational, rotational, and (when
appropriate) angular momentum splitting parameters for each

observed vibrational level of each isotopologue in each electronic
state: {Gva BU? Dvy Hvy LU; ceo s Quy Poso-- s }

B. Dunham-type expansion representing each band constant as a
power series in (v+3):
E(,J) = Y ) Yiu(w+3) [J(J+1)]"
m=0 /
Advantages:
e both usually able to satisfy Objectives 71 & 2:

accurately represent the data and allow reliable interpolation

e for Dunham-type expansions, the first-order semiclassical

mass-scaling relates coefficients for different isotopologues

v @

m+4/2
= Yé% X (%) allows realistic extrapolation to predict

properties of other isotopologues (except for hydrides).

e friendly, familiar forms!



Shortcomings:

A. Band Constant representations:

e no direct way of making predictions for other isotopologues
e no way of making vibrational extrapolations

e empirical fitted centrifugal distortion constants {D,, H,, L,, ...

become increasingly irregular with increasing order

e require a tediously large number of parameters:
e.g., for the A°Il,, state of I,
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Shortcomings:

A. Band Constant representations.
e no direct way of making predictions for other isotopologues
e no way of making vibrational extrapolations

e empirical fitted centrifugal distortion constants {D,, H,, L,, ...

become increasingly irregular with increasing order

e require a tediously large number of parameters:
e.g., for the A°Il,, state of I,

B. Dunham-type expansions in (v—i—%)
e data sets involving many vibrational levels often require
sufficiently high-order polynomials that the least-squares fits

become unstable.

e polynomials are notoriously unreliable for extrapolation!
e.g., for the A?’Hoﬁ state of I

e an inconveniently large number of fitting parameters is often
still required: e.g., for the X 12; state of Rb,
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Yim’s for X('S7)-state Rb, from a fit to 12148 data for levels v=0 — 113

Yie  57.7891594(£1.2x 107%) Yoo —1.35672x1078(45.6x1071)
Yoo —0.13955803(44.8 x 10704 Yip —5.711x1071(£1.9x1071)
Yip —3.967991x 10~4(+1.1x10~%) Yoo —1.5734x10712(£3.4x107'2)
Yie  3.432253x1075(+1.6x 1077 Yis —4.7516x10713(£3.3x 10713)
Yoo —3.7913646x 1076(4+1.5x1079) Yia  T7.19687x10714(£2.0x 10~ 1)
Yoo  2.6921523x1077(£9.7x1078) Yy —4.61312x10715(+7.9x10716)
Yoo —1.3614188% 1078(4+4.5%1079) Yoo  1.66068x10716(£2.1x10717)
Yoo  5.02067882x10710(+1.5x10710) Yz, —3.65461x 107 8(£3.8x10719)

Yoo —1.3783277x10 1 (+3.8x10712) Yas  5.0119x10720(£4.5x 1072
Yioo  2.8320980x 107 13(£7.2x 10~ 1) Yoo —4.1762x10722(4+3.3x10723)

Yiio —4.369351x10715(£1.0x 10715) Yige  1.933x107%(£1.4x107%)
Yiog  5.032431x 10717 (£1.1x10717) Yiio —3.81x10727(£2.5x107%)
Yizg —4.26008x10719(£8.7x107%0)
Yiso  2.57191x 1072 (£4.9x10722) Yo.3 1.129x 1071 (£2.2 x 10719)
Yiso —1.0477x10723(£1.9x102) Yis —1.7728 x10715(£6.7x 10719)
Yieo  2.58x10726(£4.3x107%7) Yas 3.0291 x 10716(£9.6 x 10717)
Yizg —2.9x1072(£4.5x107%) Yaz —2.0947x10717(£7.4x1071%)
Vi3 5.3849x 10719(£3.5 x 10719)
Yo 2.2404336x 1072(£6.1x1077) o 7.162x 10724 (£1.0x 1072)
Yi; —5.58167x107°(£2.4x1077) Yoz —8.042x10723(4£2.2x10722)
Ya1 —3.35513x1077(£5.3x107%) Y73 2.1403x 10723(£3.1 x 10~ %)
Y4 1.37264 < 1078(£6.3 x 1077) Ysz —2.811x107%(£2.9x1072)
Vi1 —1.702632x 1079(+4.5 x 10710) Yo.3 1.867x10727(£1.6 x 10728)
Y54 9.85778 x 10711 (£2.1x 1071) Yips —5x10739(£3.7x10731)
Yoi1 —3.520313x10712(£6.5x 10713)
Y74 8.07427 x 10714 (£1.4x 107) You —5.37x10720(£3.0x107%)
Ys1  —1.20993x107(41.9x 10716) Yia  2.348x10729(£9.2x 1072
Yo 1.17177x 10717 (£1.8 x 10718) You —4.472x107H(£1.2x1072)
Yigp —7.023x1072°(£1.1x10720) Y34  3.847x107%2(£8.4x 10723)
Yiia o 2.347x107%2(£3.8x 1072) Yig —1.7873x10723(£3.4x102)
Yig1 —3.3x1072°(£5.8 x 107%) Y54 4.765x 10725(48.0 x 10729)

You —T7.29%107%(£1.1x10°%7)
You o 5.94x1072(£8.4x107%)
Yau —2.0x1073(£2.6x 10752)




What else 1s missing ?

e spectroscopic intensity calculations requires a knowledge of the

potential energy function within the ‘data range’ of interest

e calculating collisional properties of molecular systems requires a

knowledge of the whole potential energy function

e ab initio potential energy calculations inconvenient to use unless

summarized as a compact, well-behaved, analytic function



What else 1s missing ?

e spectroscopic intensity calculations requires a knowledge of the

potential energy function within the ‘data range’ of interest

e calculating collisional properties of molecular systems requires a

knowledge of the whole potential energy function

e ab initio potential energy calculations inconvenient to use unless

summarized as a compact, well-behaved, analytic function

Some ‘traditional’ solutions ......
e Lennard-Jones(m,6): Vi;(r) =9, [L_(j (%)m _ (7;_6)6]

e Exponential-6: Vir) = D, |:ai_66—04(7“—7“e)/7“e 0%6 (7;6)6}
e Morse: Vir) = D, [1 — e—ﬁ(r—re)]Z
e Hulbert-Hirschfelder: V(r) = ©, { [1 — e Al Te)} +cB(r—r)Pe 200 1 4 bB(r — re)]}
e ... etc. ...
but these forms ......

e all have limited flexibility

e most lack correct theoretical inverse-power long-range behaviour

e most are mathematically ‘ugly’



Old Solution for diatomics (1960 — 1990)

e Represent level energies as power series in (v+3) and [J(J+1)] :

EwJ) = T. + 3.3 Yi (043 [T +1)]"

m=0 [=0

e Use the semiclassical “RKR” method to determine a pointwise

potential > v 1
nG) = nG) = 2k [ g

| | = [ B,
L — 2 24 (% d /
r1(Go) ra(Gy) b /vmm [GU_GU’]I/Q :

Yields a very precisely defined and smooth potential!

(=~ to machine precision)



Old Solution for diatomics (1960 — 1990)

e Represent level energies as power series in (v+3) and [J(J+1)] :

Ew,J) = T, + ZZ' Vi v+ I+ 1)

m=0 [=0

e Use the semiclassical “RKR” method to determine a pointwise

potential 5 v 1 /
ra(Gy) — mi(Gy) = 2\/ 57 / Gy — G2 dv
| | 5o Y By
_ — 9, /=K v dv’
741<Gv> T2<Gv> - /vmm [Gv — le]l/Q ’

Yields a very precisely defined and smooth potential!

(=~ to machine precision)

Problems:

e ncorporates no natural extrapolation capability

e based on the first-order semiclassical approximation, so

accuracy s limited for small-reduced-mass systems

e a potential defined as a large, irregular array of points
with distances specified to many significant-digits

1s quite inconvenient to work with !



‘Direct Potential Fits’

{For 3-D Van der Waals molecules since 197}, and diatomics since ~ 1990 }

e Simulate level energies as eigenvalues of some parametrized

analytic potential energy function V(r;{p;})

e Partial derivatives of observables w.r.t. parameters p; required

for fitting are generated readily using the Hellmann-Feynmann

theorem: dE(v,J) OV(r;{p;})
— wU,J wﬂ"]
Op; Ip;

e (Compare predicted transition energies with experiment, and

optimize potential parameters via an iterative least-squares fit



‘Direct Potential Fits’

{For 3-D Van der Waals molecules since 197}, and diatomics since ~ 1990 }

e Simulate level energies as eigenvalues of some parametrized

analytic potential energy function V(r;{p;})

e Partial derivatives of observables w.r.t. parameters p; required

for fitting are generated readily using the Hellmann-Feynmann

theorem: dE(v,J) OV(r;{p;})
— 7751)“] wv,J
Op; Ip;

e (Compare predicted transition energies with experiment, and

optimize potential parameters via an iterative least-squares fit

Advantages

e final result is a global analytic potential energy function

e allows realistic predictions in ‘extrapolation’ region outside

the data range, and of non-spectroscopic properties
e yields full quantum mechanical accuracy

e readily accounts for Born-Oppenheimer breakdown (BOB),

A-doubling, and/or °Y splittings, in terms of radial functions
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Extracting Potentials from Spectra

Peter F. Bernath

or most elements, we know whether
F they can form a diztomic molecule,
especially for light atoms that have few
electrons and can be treated readily by theory.
But for one such light element, surprises are
still in store. For most of the 20th century,
experimental and theoretical studies agreed
that the beryllium dimer (Be,) did not exist.
The Be atom has filled electron shells and
like the inert gases such as helium—was
expected to form at most a weak van der Waals
dimer at very large internuclear distances. Yet,
as shown experimentally by Merritt ef al. on
page 1548 of'this issue ( /), Be, does exist and
has a relatively short bond (2.45 A), relative to
the anticipated van der Waals complex with a
bond length of about 5 A. Its unusually flat
potential curve limits the number of vibra-
tional levels and provides the rare opportunity
to study the highest vibrational state of & mol-
ecule just at its dissociation limit.
Experiments with beryllium are difficult
because the metal is refractory (it has a low
vapor pressure even at very high tempera-
tures) and because beryllium-containing
compounds are generally extremely toxic.
However, Be vapor can be created through
laser ablation of a Be metal target. Rapid cool-

Department of Chemistry, University of York, Heslington,
York, Y010 500, UK. E-mail: pib500@york.ac.uk

19 JUNE 2009 WOL 324 SCIENCE
Fublished by ARAS

ing of the vapor during supersonic expansion
through an orifice into vacuum allows prepa-
ration of the dimer. The rovibrational states of
the dimer are then probed with a double-
resonance method: One laser excites the mol-
ecule into an excited electronic state where the

An analysis of the spectra of the elusive
beryllium dimer, aided by ab initio
calculations, characterizes the molecule
near its dissociation limit.

atoms are still bound; stimulated emission

pumping (.2) by a second laser returns the mol-

ecule back into each of the bound vibrational
levels of the ground state.

The data analysis performed by Merritt

et al. is noteworthy because it allows a better

connection to theory than stan-

dard methods. Vibration-rotation

1000
D, energy levels are usually reduced

] to spectroscopic constants that are

4004 parameters in a power series ex-

T pansion that uses the relevant

| guantum numbers of the states (3,

T 600 4). However, an excessively large
- number of expansion terms are
- I Y needed, particularly for a potential
E 400 |} with an unusual shape such as
1~ = Be., and these fitting parameters

1 1IN have lost their physical meaning.

200 Bey(1E7) In contrast, a parameterized po-

= v=0 tential function (see the figure)

I'..' requires far fewer fitting parame-

¢ 3 H H o tersand makes a direct connection

&
v [8)

Shallow potentials with deeper implications. The potential
energy function for Be, as a function of interatomic distance rwas
determined by Merritt of ol. from a fit 1o the experimental obser-
vations. The levels become more congested as the energy nears the
dissociation limit £ . The bound vibrational energy levels and the
sguare of the vibrational wave functions were calculated by LeRoy

with his program LEVEL (5).

with ab initio quantum chemistry.

Merritt et al. adopted a2 more
powerful analysis method that
bypassed traditional constants in
favor of a parameterized potential
energy function obtained from a
direct fit of the energy levels using
the vibration-rotation Schradinger

WAWW.SCIeNCcemag.org

Downloaded from www .sciencemag.org on Ji




Challenge ... to develop analytic potential function forms

* X X K

flexible enough to fully represent extensive high-resolution data
robust and ‘well behaved’ (no spurious extrapolation behaviour)
incorporate appropriate physical limiting behaviour

compact and portable — defined by ‘modest’ no. of parameters



Challenge ... to develop analytic potential function forms

flexible enough to fully represent extensive high-resolution data

robust and ‘well behaved’ (no spurious extrapolation behaviour )

incorporate appropriate physical limiting behaviour

compact and portable — defined by ‘modest’ no. of parameters

* X *x X

Traditional Approach

Polynomial expansions V(r)=cy&* (1+>,_; ¢ &) in variables:
r—r,

e Dunham p = e Simons-Parr-Finlan (gpp = =T
Te
e Ogilvie-Tippin Sor = i e Surkus (‘GPEF’) Esur = o
g pping  for = - S S T her
r—r
e Tiemann et al. _ e
o1 r+br.

Problems with such polynomaal potentials

e good fits require a relatively large numbers of terms
e polynomials always behave badly outside the ‘data region’

e correct theoretical long-range behaviour not readily imposed

Instead ... consider ‘global’ analytic functions



Coxon-Hajigeorgiou ‘Generalized Morse Oscillator’ (GMO)

2

Vano(r) = D |1 = e /=
with A= 6 (r—r)
i=0 [
e algebraic structure defines BGMO(:)D
basic potential shape /A
e modest changes in exponent 0.0’
coefficient ((r) suffice
to define detailed shape |
e very effective for data analys 300007
e.g. for CO('Y")
+ data precision 0.0005 cm™!
+ data span > 75% of D, Ve,
x more than 10000 data -
fit within uncertainties 100007
x potential requires only
10 fitted (3, parameters

-1.0

- o
"
.r
.r

data region

..._/

Published HI(X's}) -
GMO potential

20000 -




Coxon-Hajigeorgiou ‘Generalized Morse Oscillator’ (GMO)

Vano(r) = De {1 il |
20
with  (G(r) = Z Bi (r—r,) :
=0 1.0}
e algebraic structure defines g _ ) |
basic potential shape /A .
e modest changes in exponent 7
coefficient ((r) suffice
to define detailed shape
e very effective for data analys 5000
e.g. for CO('X")
+ data precision 0.0005 cm™! 20000
* data span > 75% of O, Vi,
x more than 10000 data 10000
fit within uncertainties
x potential requires only
10 fitted (3, parameters

o but ...

-1.0r

I T T T T I T T T T I
dataregion _..-=7T T *+._ extrapolation 1
/ ., region
Published HI(X %) .
GMO potential .
T T T
D T
i .+ extrapolation
. region .
/ :
/ :
/ 5
B / :
T data region i
0 ! ! L =
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problems at large r !



Blame the problem on the expansion variable !!

If B(r) is simple polynomial, as r — oo, necessarily ((r) — +oo or —oo

Introduce the ‘Extended Morse Oscillator’ (EMO)

VEMO<T> = 3¢ [1 o 6_5<T)'<T_7“e) } :
replacing  3(r) = fowo(r) = > 6 (r

with B(r) = Braolr) = Z@ (““) = > Bln()

T+ Te



Blame the problem on the expansion variable !!

If B(r) is simple polynomial, as r — oo, necessarily ((r) — +oo or —oo

Introduce the ‘Extended Morse Oscillator’ (EMO)

VEMO<T> = 3¢ [1 o 6_B<T)'<T_Te) } :
replacing  3(r) = fowo(r) = > 6 (r

with B(r) = Braolr) = Z@ (““) = > Bln()

T+ Te

r—r
Since yi(r) = (r+r6> — +1 as r — 00 ,
€

— —1 as r — 0,

shouldn’t we expect the exponent polynomaal,
and hence also the potential, to be well behaved?

Consider our published EMO potentials for CuH, AgH & AuH
determined from direct fits to high resolution IR data.



C |Published B(r) functions s
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V_,o() = D [1-e ]
Expanding [(r) as a power series in y.(r)
e For AgH EMO exponent coefficient always

positive, so potential is 'well-behaved’ in
extrapolation region at both large & small r



Published B(r) functions
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Expanding [(r) as a power series in y.(r)
e For AgH EMO exponent coefficient always
positive, so potential is 'well-behaved’ in

extrapolation region at both large & small r

e For AgH exponent coefficient B(r) changes
sign at large r, so potential turns over there!



+ |expanded in terms of y.(r)

Published B(r) functions
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Veuol(r) = D [1-e ]
Expanding [(r) as a power series in y.(r)

e For AgH EMO exponent coefficient always
positive, so potential is 'well-behaved’ in
extrapolation region at both large & small r

e For AgH exponent coefficient B(r) changes
sign at large r, so potential turns over there!

e For CuH coefficient (r) changes sign in
both large and small r regions, so potential
turns over at both large and small r!



blame the problem on the expansion variable!

Again ...
Consider: | — | T
1.0
P —rk
A =
yp( ) (Tp-i—rep)
0.5
r’—r’
r'+r’ |
0.0
The power p i
in yy(r) is R )
: ' I / MgH data
very important ! :
i region
7 —
_10 [ T R [ [ TR TR SR S S|
0 1 +/r 2 3

e

e for p too small, much of the range of y,(r) is outside the
region where the polynomial 3 (y,(r)) is determined, so [3(r)
(and the potential) may misbehave there!

e for p too large, y,(r) is too ‘flat’ in the outer parts of the data
region to allow a good fit to the data (e.g., MgH for p > 5).
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Recall the challenge ... to develop analytic potential function forms:

x able to accurately represent extensive high-resolution data \/
x robust and ‘well behaved’ (no spurious extrapolation behaviour) \/
x tncorporating appropriate limaiting long-range behaviour!

At long range, all molecular interactions become

Vir) ~® — — — — — ...,

so we want a function which incorporates this behaviour.



Recall the challenge ... to develop analytic potential function forms:

* able to accurately represent extensive high-resolution data ./
* robust and ‘well behaved’ (no spurious extrapolation behaviour) /
x tncorporating appropriate limiting long-range behaviour!

At long range, all molecular interactions become

Vir) ~® — — — — — ...,

so we want a function which incorporates this behaviour.

Morse/Long-Range (MLR) Potential

If we define uig(r) = lel + Cm; + ...  Wwe can write
f,am frm
Wip(r) = D {1 _ur(r) e—ﬁ("“>'yp("”>}2
c upRr(re)

upR(re) Fmi pmy

r Te —Boo Cm Cm
> D, — {M}ULR@“) - D, — 1 2

in which  5(r) = Buir(r) = B0 (1) + [1 = y,(r Z B yp(r

where B = B(r=o0) = In{29./urr(re)}



Consider Ground-State N>

80000 ' ' ' ' E
Fit all available (reliable) data - EMO,
78000} M-4(6)
[Raman, quadrupole, and electronic|
for all three isotopologues V(r)/cm™ MLR,(6,8)
[14,14N2, LN, | and 15,15N2] {MLRG,(G) _
B MLR,(6,8 |
to EMO,(N), and MLR,(N) 74000 (09) -
. . [ MLR,(6,8)
potentials for various values of p 72000 ]
and exponent polynomial order N e L

L1 TR T N T T TR N N T N ]
2.0 2.2 24 ,22.6 2.8 3.0
©. fixed at accurate known value.] r/A

80000

V(r)/cm™
Obtain excellent fits for 60000 T
a variety of models.
40000}
How do we choose the best!
20000}
0_ 1




Compare behaviour of these N, potentials outside the ‘data region’

Can write overall potential as

Cg'(r)

76

Vir) =9 —

Since at long range

then
Ci'(r) = [0 = V(r)

r—00 C
—— Cg + —7§ +
T

So a plot of Cfi(r) vs. 1/r?

should approach

: th
e an intercept of C; ™"

e with a slope of C"

from above!

50000

V(r)/c

IIB.II_

-50000

6x10°

|
1 2 3r/A4 5

(o))

C'=r

"[D-V(n)]

4x10°

2x10°

0x10°

Ctheory

1 2 3r/A4 5 6



Compare behaviour of these N, potentials outside the ‘data region’

Can write overall potential as — T T T T T T

6 _
V(T) — 9 — 6 . — /¢ _
r 500000 -
Since at long range - MLR,(6,8) N, data]
- - - * region
6 8 i |
then i |
CH(r) = 5 [D — V(1) 300000 |- -
r—00 C B =
—— Cg + 7‘_28 + i )
200000 —
So a plot of Cfi(r) vs. 1/r? - -
I MLR,(6) |
should approach C6N i
e an intercept of (" 100000 o(6.8) ~
e with a slope of C" 2(6) _
from abowve ! 0 3 _
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Recall the challenge ... to develop analytic potential function forms:

+ able to accurately represent extensive high-resolution data ./
* robust and ‘well behaved’ (no spurious extrapolation behaviour) /
* incorporating appropriate limiting long-range behaviour! ./

x compact and ‘portable’ — defined by a ‘modest’ number of

parameters



Compare M LR with other current model potential forms

1. Tiemann-type polynomials

° ° ° ° ° ° /,n Te
e potential in ‘data region’ is a polynomial in ( )
r+br,

e attach repulsive-wall function at some chosen inner bound r,,
e attach an inverse-power long-range tail at some chosen outer

bound 7,y

2. Pashov’s Spline Pointwise Potential (SPP)

e potential in ‘data region’ is cubic spline function on a selected
radial mesh: potential-fit parameters are energies of those

spline points

e attach an inverse-power long-range tail at some chosen outer
bound 7,y



Compare M LR with other current model potential forms

1. Tiemann-type polynomials

° ° ° ° ° ° ,ri Te
e potential in ‘data region’ is a polynomial in ( )
r+br,

e attach repulsive-wall function at some chosen inner bound r,,

e attach an inverse-power long-range tail at some chosen outer

bound 7,y

2. Pashov’s Spline Pointwise Potential (SPP)

e potential in ‘data region’ is cubic spline function on a selected
radial mesh: potential-fit parameters are energies of those

spline points

e attach an inverse-power long-range tail at some chosen outer

bound 7,y

Consider data analysis for ground-state Cay(X 'S})
e 3553 data — typical uncertainty 0.006 — 0.015 cm™*
e data span 99.97% of D,
e highest observed level (v=38) bound by only ~0.3 cm™!



Tiemann polynomial (2003)

ai2

15
16
a7
a18
19
a20

T'm

Tout

1102.074

1.0030 x 107
3.87x 10®
4.41x10°
—0.5929
0.00043
—2.57153863528197002
3.79611687289805877 x 103
3.82947943867555637 x 102
—2.74470356912936631 x 10°
—3.23378807398046092 x 103
3.70205119299758223 x 102
6.35318559107446436 x 103
—7.39783474312859562 x 10°
—1.90759867971015337 x 10*
5.41779135173975228 x 10*
4.40527349765557083 x 10*
—1.55406021572582802 x 10°
—8.35826911941128783 x 10*
2.13873243831604603 x 10°
1.56022970979522303 x 10°
—1.56329579530082468 x 10°
—1.46822446075956163 x 10°
2.74480910039127666 x 10*
7.11882274192053592 x 10*
—7.63044568335207146 x 102

4277277 A
9.5

Spline pointwise potential (2003)

MLR; 3 (2009)

. 1102.060

Cs 1.0023 x 107

Cs 3.808 x 10°

ClO 5.06 ><109
r/A U/cm™! r/A U/cm™!
3.096980 9246.6895 5.678571 636.3741
3.188725 6566.7325 5.809524  684.9589
3.280470 4525.7282 5.940476  728.9235
3.372215 3090.9557 6.071429 768.5976
3.463960 2134.2175 6.202381 804.2551
3.955705 1475.2425 6.333333  836.2419
3.647450 1004.5043 6.464286 864.8746
3.739195 661.4123 6.995238  890.4666
3.830940 410.6117 6.726191 913.2923
3.922685 234.0001 6.857143  933.6417
4.014430 116.0996 6.988095 951.7718
4.106174  44.5437 7.119048 967.8632
4.197920 8.6885 7.250000 982.2159
4.289664 0.1760 7.500000 1005.2497
4.381409  11.9571 7.750000 1023.6698
4.500000  48.5948 8.000000 1038.3262
4.630952 106.9081 8.358974 1054.3861
4.761905 175.7311 8.717949 1066.0579
4.892857 248.8199 9.076923 1074.5969
5.023809 322.3873 9.435897 1080.8961
5.154762 393.7222 9.794872 1085.5974
5.285714 461.4555  10.303419 1090.2990
5.416667 524.6311  10.811966 1093.5160
5.047619 582.9870  11.611111 1096.6870

D, 1102.076
re  4.27781

Cs  1.046x107
Cs  3.0608 x10°
Clo  8.344x10°

Tref 5.55
By —1.4672501
B —0.20012
By —0.72633
By 0.1229
By —0.2763
Bs  0.506
Bs  0.357
B;  1.022




e Fits with all three models account for all data within

uncertainties, but ...

polynomaial and SPP potentials:

% require many more parameters

+ long-range tail is ‘attached’ at a chosen (ad hoc) point, and

not a natural component of the potential

x irregular short-range behaviour requires inward

extrapolation outside the ‘data region’ to use

an ad hoc function attached at a chosen (ad hoc) point

x slightly poorer quality of fit (i.e., bigger error 7) !

potential function

form urr(r)

no. parameters
o] total  fitted 107 x Cq

Pashov spline (g, Cg, C
Tiemann poly. Cg, Cs, Chy
MLR; 3(7) Cs, Cs, Cho

theory CP(2008)

0.74 52 50  1.002(+?)
0.60 30 24  1.003(£0.033)
0.62 16 11  1.046(£0.003)

1.055

Which experimental Cy; would you trust?



Improving the model — minding our p’s and q’s

For X('Y7)-state Liy, including 3 terms in urr(r) (Cs, Cs & C)g) means we must

set p > 5. But in this case:

e y,(r) is very flat and ~ 1.0
over much of the domain
® so a very high-order exponent

polynomial would be required

to describe the potential

e and it would have large

coefficients of alternating sign!

00—

1.0 T T T T

Li,(X) data region

05+
rP—r?
r’+r”

05+

-1.00

2

r/r
e

L0
3




Improving the model — minding our p’s and q’s

For X('Y7)-state Liy, including 3 terms in urr(r) (Cs, Cs & C)g) means we must

set p > 5. But in this case:

e y,(r) is very flat and ~ 1.0 1.07 e
. L =6 P p=2_ -7 ]

over much of the domain P 7 =7 -
: : Lo — =1L _|
® so a very high-order exponent 05F A g == .
L / - i
polynomial would be required P~ | :’/ - 1
P Pt A .
to describe the potential Ptk | é/ﬁ,’/ p=3 -
00— _ .
e and it would have large i /i p=4 1
B /II 7
coefficients of alternating sign! [ //,'/Il ]
05F /, ’,’/'l -
L // P /II |
- / .
. e . v Li,(X) data regi -
So introduce y;ef = e J(X)dataregion _

Tp —I_ Trefp _1 0 i, [0 T N T RN TN N A TN N Y N Y SO Y S N AN Y SO T SN NN SN MO S
0 1 2 r/r 3 4 5 6
and then define ¢
ref — ref ref ref
ﬁ(?") p,q(r) — ( ) 600 [ E ﬁz

p must be bigger than the difference between the highest and

lowest inverse powers in uir(r), and hence is reatively large,

but ¢ can be smaller — giving a better expansion variable!



Consider NaCs(X 'S})

5056 data — typical
uncertainty ~ 0.003 cm™
data span 99.96% of 9,
highest observed level (v=_383)

bound by only ~1.76 cm™!

1

outer turning point ~14.7 A

MLR.4(6; 20)

MLR; 3(13)

potential no. param.

form o total fitted

Pashov spline
polynomial(29)
MLR,(6,20)
MLR; 3(13)

0.88 55 54
0.88 42 32
0.66, 27 24
0.669 22 17

D./cm™!
re/A
Tref/A

C/cm™'AS
Cg/cm™! A®

Cm/Cm_l Alo

{p. ¢}
Bo
B
B
B3
B4
Bs
B
Bq
Bs
By
Bio
B
B2
E
Bia
Bis
Bie
Bz
Bis
Brg
B2

1954.173(3)

1954.192(3)

3.85050(1) 3.850503(3)
Te 5.2
1.555 % 107 1.555 % 107
4.89% 108 4.89% 108
— 1.72x 107
{4, 4} {5, 3}
—2.22118251 —0.29786199
—1.0553496 —1.2822112
—1.546359 —1.116747
—1.0359 0.192419
—1.51071 1.10351
—1.3729 1.28574
—1.0316 0.7156
1.0211274 x 10* 1.6298
—2.12300206 x 10° 4.401
2.10449537 x 10° 5.722
—1.293897106 x 107 1.47
5.45420478 x 107 —4.96
—1.65568755 x 108 —6.83
3.7115571 x 10% —3.3
—6.2083203 x 10°
7.738836 % 10°
—7.09447 x 108
4.64693 x 10%
—2.0589 x 10°
5.53 % 107
—6.8x10°




MLR structure also works for long-range forms which, e.q.,

e incorporate ‘damping’ functions:

C, C,
urr(r) = Dm1<7a> -+ sz(ﬂ ~

ri

e incorporate inter-state coupling [sce MI-02 for 3-state coupling case]

AT () = A . Cy + C§ . Ce + Cg . Cs + Cf
LR 2 273 270 278
2
L1 C§—C§+C§—C£+C§—C§_A
2 373 370 378 »

crocn croct or-com\?)
+ 8 + +
373 376 378

This model has been/is being applied to analyses of data for diatomics:
N2(X12g), KLi(a3X"), Caz(XlEg), MgH(X?X "), Csy(a*X),
Csy(X 1XH) [see MI01], Bez(lzg), NaCs(lzg), Liz(X12g>, Lix(A1X1),
Liz(a®X), Liz(c'IIy) [see MI02] and NaRb(X'X!)

and generalized 3-D and 5-D versions have been used to fit to ab initio potential

energy surfaces for:
He—CO,; & Hy;—COs5 [see FB-01 re. superfluidity of COy(Hy), clusters]



Representing ab initio Potential Energy Surfaces

For atom-molecule & (small) molecule-molecule systems:

e use an MLR radial function for the {monomer}—{monomer}

interaction

e with parameters {®., r., §;} depending on monomer-vibration

and relative-orientation coordinates

e.g., potential for He—CQO5 depends on
= monomer centre-of-mass separation r
= (CO, axis orientation 6 relative to 7

= (CO, asymmetric stretch coordinate ()3

Calculated a 3-D potential surface consisting of 2832 points
e on the domain: r=22-10A, 6=0-180°, Qs € [-0.22, +0.22]

e supermolecule CCSD(T) calculations with full counterpoise

correction

e used aug-cc-pVQZ basis supplemented by bond functions



Plot radial cuts through surface at selected 6 & )3

2-D contour plots at selected ()3

Q,=-0.21895

30 60 %0 4 120 150 180



Fit He—CO, ab initio points to generalized MLR function:

2
VMLr(Q3,0,7) = D.(Q3,0) [1 — uLr(@s,0.7) o~ B(@3,0)-yp(r,re)
uLR(Q37 (97 Te)

CG(Q?M 9) 4 CS(Q?M 9)

76 78

uLR(Q37 (97 T) —

P —r.(Qs,0)
rP + 7“6<Q3, Q)p

D.(Q3,0) Z Z bix (Q3) " Py(cos®)
J=0 A=0

Q37 Z Z C]/\ Qg J P)\ COSQ)
J=0 A=0

Br(Q3,0) Z Z i (Q3)’ PA (cosf)
J=0  A=0

where Te = T€<Q3, @) and yp(r, Te) —

and expand:

Fit of a 53 parameter function to 2175 points has standard error
0.034 cm™! [24 parameters for ©,., 13 for r,, and 16 for 3)— (3;]

e eigenvalues of our fitted surface agree with those of a 3-D

spline surface to within (on average) 0.003 cm™!



Dependence of
the well depth D,
on (Y3 and 0 1s

most dramatic !

%un(%r’—?) - = De(Q3 ’ 6)

0.4 h
Ll
L 50 0




Vibrational frequency shifts for CO, in (He), clusters defined by

difference between 2-D vibrationally averaged (over (J)3;) potentials
for He—C()Q(Ug:l) and He—C()Q(Ug:l)
The quality of the 2-D functional form matters!

180
MLR(v,=1) - MLR(v,=0)
0.6IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 150 /’ I' I' I, [I_

’ ¢ ’ /
Av,/cm’’ T 120 ]
- 3 )/ -0.00 ¢ -0.001 -
© 90 Co ’
0.4 from Ran & Xie's - =2 o1 \_ 002 -
I HFD(v,=1)~HFD(v,=0) | S 60 NN N N
D -
0.2 4

0.0

[ calculated from
MLR(v,=1) - MLR(u,=0)

02 paaady v by by by s dlsv s ls sl
0 5 10 15 20n25 30 35 40




Conclusions

‘Direct Potential Fits’ are supplanting traditional
‘parameter fits’ in spectroscopic data analysis

They provide as good or better (and much more compact!)

representations of even very large spectroscopic data sets

They readily yield reliable predictions for

missing observations within the data range

They provide much more reliable predictions for

the ‘extrapolation region’ outside the data range

They can yield reliable equilibrium bond lengths 7.,
bond dissociation energies ®., and long-range potential

constants (), as parameters of the fitted potential, and
the resulting ‘global’ potential functions allow calculation

of a host of spectroscopic and collisional properties.

but the quality of the result depends
on the quality of the potential function form !



Keys to successful ‘potentiology’

e a dimensionless radial expansion variable with a finite range
P —rF

such as y,(r) =
rP + 1k

e fitting to a exponent coefficient is much more efficient than

) [J.F. Ogilvie (1981); A. Surkus (1984)]

fitting to the function itself [J.A. Coxon (circa 1990)]

e incorporating limiting long-range behaviour within the
potential model, rather than attaching it at some ad hoc point,

allows for much more robust extrapolation
e careful selection of the radial expansion variable can yield
x particularly compact (few-parameter) and

x particularly robust (extrapolating sensibly) potentials, but

“mind your p’s and q’s — and take care with 1r.¢”

The MLR radial function

R — B eun(r) 12
VMLR(T) = De {1 - uff?(&g) el )}

1s the best two-body potential function introduced to date!




Diatomic DPF analyses may be performed ‘routinely’ using

program DPotFit (‘Diatomic Potential Fits’)

{ available with manual from http://leroy.uwaterloo.ca/programs/ }

which performs DPF fits to spectroscopic data and can:

e simultaneously treat any combination of microwave, infrared, electronic,
fluorescence series, tunneling level widths, & photo-association data
x for one or multiple isotopologues
x for one or multiple electronic states

e take account of atomic-mass dependent Born-Oppenheimer breakdown

o take account of A-doubling of singlet states or *Y splittings

e use ‘sequential rounding and re-fitting” to automatically yield fitted
parameters with a minimum number of significant digits and no loss of
precision in representing data

e use Watson’s “robust” data weighting technique to damp the effect of
“outlier” observations which give anomalously large discrepancies with the
model, and might unreasonably mislead a fit.

e use four types of potential forms: EMO, MLR, DELR, or polynomials.



The MLR radial function

VALR(r) = De {1 - % e—ﬁ@“)‘yp(?“)}

2

ts the best two-body potential function introduced to date!

x able to accurately represent large, high precision data sets
x robust and ‘well behaved’ (no spurious extrapolation behaviour!)

x compact and ‘portable’, requiring a relatively ‘modest’ number

of parameters

x incorporates correct theoretically known long-range

behaviour in a natural way
+ allows use of a variety of form for the long-range function wuyg(r)
x continuous and smooth everywhere

x compact and elegant!



Consider: full 3-D PES for BeH, as a function of coordinates:
rs = ri(BeH) + r1(BeH)
rq = ro(BeH) — r1(BeH)
0 = cos () - )

aVa

U(T‘S, Td, (9) = V(T& rd, ‘9) - VH2<TH2)
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