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Complexes consist of stable molecules held together by Van
der Waals interactions

Extract information about these interactions or confirm ab
initio or pairwise potentials.

A lot of detailed experimental data is available
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How do spectroscopists usually extract potential
information ?

Use normal coordinates and a molecule-fixed axis system
(Eckart) chosen to minimise Coriolis coupling
Use perturbation theory. Energy levels are eigenvalues of an
effective rotational Hamiltonian :
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This approach works poorly for Van der Waals clusters

It treats perturbatively the effects of

anharmonicity

Coriolis coupling

centrifugal coupling

The zeroth-order model is harmonic + rigid rotor.
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An alternative is to numerically solve the Schroedinger
equation

Hψn = Enψn

H = T + V
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To compute a spectrum one must choose coordinates that describe
the shape and orientation of the molecule and find the associated
kinetic energy operator (KEO).

the chain rule
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To obtain the potential

solve the electronic Schroedinger equation for many different
shapes

fit a function to these points
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How does one solve the Schroedinger equation ?

represent wavefunctions with basis functions

ψn(r,θ) =
∑
k

cn
k fk(r,θ)

compute eigenvalues and eigenvectors of the Hamiltonian
matrix
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The most obvious basis functions are product functions :

fk1,k2,··· = φk1(r1)φk2(r2) · · ·φkN
(θ1) · · ·

Between 10 and 100 1-d functions required for each coordinate.

⇒ > 103N−6 multi-d basis functions required.

Diagonalization of the Hamiltonian matrix is very costly.

Both the CPU time [(basis size)3] and the memory [(basis size)2]
scale very badly.
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Alternatives

Semi-classical methods

accuracy
feasibility (many trajectories, long-time propagations)

Monte Carlo methods

great for the ground state
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Diagonalization can be avoided by using iterative methods

Energy levels, intensities, rate constants, cross sections can be
computed from time-independent methods that require only
evaluating matrix-vector products

Matrix-vector products can be done without storing the
matrix

Only a few vectors are stored

NB A spectrum is obtained without storing or computing a
Hamiltonian matrix
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Lanczos Algorithm

H =



· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

→

· · 0 0
· · · 0
0 · · ·
0 0 · ·

 = T

Among the eigenvalues of T are eigenvalues of H

Eigenvectors of H are obtained from those of T
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Symmetry Adapted Lanczos Algorithm

Eigenvalues and eigenvectors for all irreps are generated from a
single set of matrix-vector products.

This is done by using projection operators and exploiting the fact
that

Hv(m) = HP̂(m)
N∑

n=1

v(n) = P̂(m)

[
H

N∑
n=1

v(n)

]
At each iteration one applies H to the sum of the Lanczos vectors
computed at the previous iteration.

Wang and Carrington, J. Chem. Phys. 114, 1473 (2001)

13 / 60



Adiabatic Approximation

We assume that the intra-molecular motion is much faster than
the inter-molecular motion

Ideally, we would use effective potentials for the slow coordinates
that are obtained by averaging the full potential with
intra-molecular wavefunctions.

Instead we fix the geometry of the monomers and compute a 4-d
(when both monomers are linear) potential.
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Choose coordinates and derive the KEO

Option I : Polar coordinates defined using axes
attached to two vectors of one monomer

attach an axis system to monomer A

Coordinates are :

the length of the inter-monomer vector ;

θ and φ angles that specify the orientation of ~R and the
vectors required to describe the orientation of monomer B ;

Euler angles that specify the orientation of the axis system
attached to monomer A with respect to the space-fixed axes.
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Axis system attached to one monomer
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Option II : Euler angles wrt a frame attached to the dimer axis

If the monomers are non-linear the coordinates are

φA, θA, ψA and φB , θB , ψB

α, β, which specify the orientation of the inter-monomer
vector.

In the linear monomer case there are no ψσ angles.
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Axis system attached to the dimer axis
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The KEO in polar coordinates attached to one monomer

K =BA
x (Jx − jRx − jBx )2 + BA

y (Jy − jRy − jBy )2 + BA
z (Jz − jRz − jBz )2

+ TR + TB ,

where

TR = BR j2R −
1

2µ

∂2

∂R2

TB = BB
x (jBx )2 + BB

y (jBy )2 + BB
z (jBz )2
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The KEO in Euler coordinates wrt the dimer frame

K = TA + TB + Tcouple + TR

where

Tσ = Bσ
x (σjx)2 + Bσ

y (σjy )2 + Bσ
z (σjz)2; σ = A,B

Tcouple = BR(~J − ~jA − ~jB)2
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Angular basis functions

Using a frame attached to one monomer

Yj1,m1(θ1, φ1)Yj2,m2(θ2, φ2)DJ∗
MK (α, β, γ)

Using a frame attached to the dimer axis

D jA∗
mA,kA

(φA, θA, ψA)D jB∗
mB ,0

(φB , θB , 0)DJ∗
MK (α, β, 0)

21 / 60



Why these basis functions ?

Matrix elements of the kinetic energy operator are simple and
in closed form

Singularities in the kinetic energy operator cause no trouble

Uncoupled basis yields efficient matrix-vector products

22 / 60



Which coordinates are best ?

The dimer frame coordinates are best if

it is possible to identify two pieces of the complex between
which coupling is weak.

The monomer frame coordinates are best if

one monomer is much heavier than the other

the R = 0 singularity is important.
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NNO dimer

Multiple minima

Non-polar global minimum with O in

Two polar wells of identical depth and shape

Two T-shaped wells with N in
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Tunneling between the two polar wells

polar (I) polar (II)

(NNO)
2

tunneling

The situation is a bit like (HF)2

polar (I) polar (II)

(HF)
2

tunneling
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Coordinates

Non-polar O-in isomer : (θ1 = 61.2 ◦, θ2 = 118.8 ◦)
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Experimental work

The non-polar O-in structure has been studied in several
papers and an IR band was first reported in
R. E. Miller and R. W. Watts, Chem. Phys. Lett., (1984)

The polar isomers were discovered in 2007.
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Previous theoretical work

Berner, East, Afshari, Dehghany, Moazzen-Ahmadi, and McKellar,
J. Chem. Phys. (2009)

They found stable structures and computed harmonic frequencies.
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Disrotatory motion

A second path exists (C2v)
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4-d potential energy surface

Richard Dawes and Ahren Jasper

Energies are computed with the explicitly correlated
CCSD(T)-F12b method and the VTZ-F12 basis.

G. Knizia, T. B. Adler, and H.-J. Werner,
J. Chem. Phys., 130, 054104 (2009)

K.A. Peterson, T. B. Adler, and H.-J. Werner,
J. Chem. Phys., 128, 084102 (2008)

about 2000 points

A 4-d surface is made by interpolating between local fits
(IMLS)

Dawes et al. J. Chem. Phys., 130, 144107 (2009)
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What is observed ?

IR bands of polar isomer

MW bands of polar isomer

IR bands of non-polar isomer predicted bands of T-shape isomer 

 v = 0 PES 

 v = 1 PES 
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Polar 

T-shape N-in

non-polar 
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In the bottom half of this figure
φ = 0 and the O atoms are on
opposite sides.

In the top half, φ = π, the O
atoms are on the same side, and
θplot
2 = 2π − θ2
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Disrotatory motion

A second path exists (C2v)
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C2v ,
C2h
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Compute the spectrum

We use the coordinates and angular basis of Option II (frame
attached to the inter-monomer vector ~R).

Sine discrete variable representation (DVR) functions are used
for R

Potential integrals are done with Gauss quadrature

Matrix-vector products are evaluated by doing sums
sequentially

We compute levels labelled by the irreps of the group
{E ,P} × {E ,E ∗} using the symmetry adapted Lanczos
algorithm
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Identification of polar levels is difficult

Polar 
144 cm-1

T-shape N-in
178 cm-1
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Non-polar isomer

Many ro-vibrational levels for overtones of 4 vibrational bands are
assigned

torsion,

geared bend

anti-geared bend

VDW stretch

Ro-vibrational transitions agree well with existing experimental
data.
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Torsion of non-polar isomer : 25.76 cm-1  

v = 0, 1

v = 2, 3

v = 4, 5

v = 6, 7
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Geared-bend and anti-geared bend of non-polar isomer

 Geared bend : 41.86 cm-1 

Anti-geared bend : 52.76 cm-1 
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Geared-bend overtones of non-polar isomer

Geared bend : 41.86 cm-1 
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Ground state of the three isomers 

Nonpolar, 0 cm-1 Polar, 143.53 cm-1  T-shape N-in, 178.03 cm-1  

tunneling tunneling
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Geared-bend of polar isomer

Geared bend : 41.86 cm-1  

20.31 cm-1 = 163.84 - 143.53cm-1(polar ground state)

geared bend of polar: 20.31 cm-1  
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How do we identify these “polar” states ?

For J = 0 we plot wavefunctions

For J > 0 we use a sum-of-monomer-dipoles approximation and
compute intensities for all possible transitions from lower J states.

When the initial state is a polar ro-vibrational state, the final state
is assumed to also be a polar state if the intensity is appreciable.
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111

000

J = 0 J = 1
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In the non-polar case the ∆J = 1 transitions are symmetry
forbidden

States are labelled by A+,B+,A−,B−.

A/B for permutation of the monomers
+/- for parity

Selection rule is A+↔ A− ; B+↔ B−
We can assign JKa,Kc labels to levels we compute.

non-polar

000 A+

101 B-

111 B-

110 A+

C2h 

Transitions forbidden by symmetry
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Which transitions occur among polar states ?

All the rotational levels come in pairs.

We know that the A + 000 → A− 111 will occur, but we do not
know if the A− 111 level is above or below the B − 111 level.

The tunneling splitting is so small ( ≈ 10−13 cm−1) that we
cannot distinguish between the options.

polar

B+000 A+

A-101 B-

A-111 B-

B+110 A+

R(0)

R(0)

across tunneling states

polar

B+000 A+

A-101 B-

B-111 A-

A+110 B+

R(0)

R(0)

within tunneling states
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Which case is right ?  

000 A+

111 A-

000 B+

111 B-

111 111

000 A+

A-

000 B+

B-

 Case I : transition within a tunneling state

 Case II : transition between different tunneling states 
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If the tunneling splitting were larger, e.g. (HF)
2

000 A+

111 A-

000 B+

111 B-

111

111

000 A+

A-

000 B+

B-

tunneling splitting

 Case I : transition within a tunneling state

 Case II : transition between different tunneling states 
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A new tool : vibrational parent analysis of rovibrational levels

● Re-expand the J=1 state in terms of vibrational wavefunction 

● Given the J=1 rovibrational wavefunctions and a set of vibrational wavefunctions,

● The contribution of state         is given by
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Which case is right ?  

000 A+

111 A-

000 B+

111 B-

111 111

000 A+

A-

000 B+

B-

 Case I : transition within a tunneling state

 Case II : transition between different tunneling states 
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H2O-H2

Ab initio potential energy
surfaces :
Hodges, Wheatley, Schenter,
Harvey, J. Chem. Phys. (2004) ;

Valiron, Wernli, Faure,
Wisenfeld, Rist, Kedzuch, Noga,
J. Chem. Phys. (2008)

Experimental study : infrared
spectra probing the bending band
of H2O Weida and Nesbitt, J.
Chem. Phys. (1999)
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Coordinates

The dimer frame is better because BR = 1.0 cm−1

Calculations done in both coordinates give idenical results, but

dimer frame coordinates : jmax = 8, nR = 45. Basis size =
125’000 for J = 0

monomer frame coordinates : jmax = 12, nR = 45. Basis size
= 646’000 for J = 0
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Some J = 1 levels

Well depth = 241 cm−1

zpe (= D0 for pH2-H2O) =
-36.34 cm−1
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Density
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FIG. 1: Ground state of pH2-H2O with E=-33.78 cm−1 (a) and oH2-H2O with E=60.06 cm−1(b)
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Results

How bands are computed : an example

is the  →  band (R branch) observed by Weida and Nesbitt

is the  →   new band (only show Q branch) !

 Band I of W&N
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Conclusion

Using modern electronic structure (explicitly correlated CC)
and quantum dynamics (symmetry adapted Lanczos
algorithm) methods it is possible to compute very accurate
spectra of Van der Waals molecules

For (NNO)2 our calculated transition frequencies agree very
well with those that have been measured

(NNO)2 has very small tunneling splittings that might be
measurable in excited states

T-shaped N-in states are predicted
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