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NiH in a magnetic field

 Sputter source inserted between permanent 
magnets to investigate magnetic response in 
fields up to 1 Tesla

 NiH is used to optimize experimental 
conditions

 Studies are a prelude to work on FeH ~ 1 µm
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Electronic spectrum of NiH ~ 570 nm
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Aims

 FT dispersed fluorescence suggests Ω=3/2 states 
(I→W

1
 (2Π

3/2
)) gives well resolved magnetic response 

at high J

 Study excited states with Ω=3/2

 We plan to study Λ
3/2
←X  transitions to find upper 

state Landé factors. 

Transitions from X (2Δ
5/2

) are WEAK
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Experimental setup

 Spectrum recorded in 
1 cm-1 scans with a ring 
dye laser, 
(17000 – 17800 cm-1)

 Lock-in detection 
τ~30ms

 Check for mode hops 
(FP fringes)

 Calibrate with I
2
 spectra
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Experimental setup
Permanent 
magnets with 
disk pole caps

B
max

 = 0.9 T

Molecular flux
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Magnetic field between the pole caps

 Uncovered magnets
This shows non-uniform B

0
 

measured on a Hall probe

 With Disk Pole Caps
This shows a flat profile of 
the magnetic field along the 
laser beam trajectory

Axis corresponds to the laser beam trajectory

With ferrite
disk pole caps

Bare magnets

Molecular
flux
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Zeeman effect

E0
B B M J 

J J1
geff

geff =gs with in Hund's case (a)

Example for Hund's case (a) :

2Σ : g
eff

=1, 

2Π
1/2

 : g
eff

=0           2Π
3/2

 : g
eff

=2

2Δ
3/2

 : g
eff

=1           2Δ
5/2

 : g
eff

=3

We know Ω for the excited states from 
observtion of first lines ( Ω=J

min
), but 

Λ, Σ and S are less obvious

 Energy splitting :
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Zeeman spectroscopy

M J=1 :

M J=−1 :

M J=0 :

transition

transition

transition

+

-

P(3½) line

Laser field is perpendicular to the 
external field

Laser is parallel polarized
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60NiH

58NiH

Examples of I←X1 spectra
 
Note isotopic overlap even in zero field conditions

π
pol

σ
pol

-3½M
J
 =  3½

σ-(-3½)
σ+(3½)

σ+(½)    σ-(-½)

R
e
(3½) 0 – 0  I-X

1
  

Zero field : 
58NiH  17339.090 cm-1

60NiH  17339.050 cm-1

B=0.59T
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Intensity issues

R
e
(3½) line Q

ef
(4½) lineπ polarisation σ polarisation

MATCH No isotopic problem
with Q line

Model with Hönl-London formulae
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R
e
(3½) line Q

ef
(4½) lineσ polarisation π polarisation

Intensity issues

POOR INTENSITY MATCH
systematic discrepancy  
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Data Reduction

 Data have been recorded for I-X and E-X systems, J < 8½

 Experiments were performed for 11 magnetic field strengths

Deconvolution was necessary in some cases

  g
eff

(J)  Landé factors are obtained from a least squares fit of 

~ 2000 lines

 Typical uncertainties on  g
eff

(J) are ~ 0.02

 Weighted RMS error for the fit : 6.58 x 10-3 cm-1
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I state, v=0
g

eff
, e parity

g
eff

, f parity

 Rapid variation 
of g

eff
 in the 

rotational levels
 At low J :

Λ
eff

≈g
s
Ω-g

eff

g
e
(1½)≈g

f
(1½)≈1.64

Λ
eff

≈1.36

probably Π state

Landé factor of I(Ω=3/2)
g

ef
f

J

T'=17272 cm-1
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Landé factor of E(Ω=3/2)

E state, v=1
g

eff
, e parity

g
eff

, f parity

 Difference in 
variation of g

eff
 with 

e/f parity  

 Evidence for very 
different electronic 
character

g
e
(1½)≈1.052, g

f
(1½)≈1.136

Λ
eff

≈2

probably Δ state

g
ef

f

J

T'=17815 cm-1
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Landé factor of D(Ω=3/2)

D state, v=0

g
eff

, e parity

g
eff

,e parity McCarthy et al.

g
eff

,f parity McCarthy et al.

g
ef

f

J

Work in progress ...

McCarthy et al. JCP. 107, 
4179-4188, (1997)

T'=17637 cm-1

g
eff

, f parity

Sudden change in electronic 
nature at low J (not obvious 

in zero field conditions)
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Zeeman profile of Q
fe
(2½) : D←X

1

B=0.72 T
σ

pol

Non-linear behaviour of Zeeman response for f parity

M
J 
= 2½ 1½ ½ -½ -1½ -2½

* *
* *

***

*
60NiH
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Perspectives and Conclusions

MH are possible probes of  magnetic 
fields in sun- or star spots

Introduction to study FeHA. Ramos et al. 
AJ 2004

Zeeman studies easily reveal changes in the electronic structure of 
these MH species.

Modeling the transitions is difficult for the excited states (predictions 
are unreliable)

For stellar spectropolarimetry, intensities are important too!

Spectropolarimetry shows 
Stokes profile
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