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What Systems Are We
Trying to Understand???

‘ Highly fluxional molecules and clusters ‘

‘ Very challenging to accurately model: ‘

Grid based methodologies scale
poorly with system size

Implementation and viability of
reduced dimensional approaches
highly system dependent

Construction of global potential
energy surfaces very challenging




The General Scheme




The General Scheme

Monte Carlo Sample
Configuration Space




An Intelligent Way to Sample
Configuration Space




An Intelligent Way to Sample
Configuration Space

‘ Use importance sampling Monte Carlo ‘




An Intelligent Way to Sample
Configuration Space

‘ Use importance sampling Monte Carlo ‘

(%))




An Intelligent Way to Sample
Configuration Space

‘ Use importance sampling Monte Carlo ‘




An Intelligent Way to Sample
Configuration Space

‘ Use importance sampling Monte Carlo ‘




An Intelligent Way to Sample
Configuration Space

‘ Use importance sampling Monte Carlo ‘




An Intelligent Way to Sample
Configuration Space

‘ Use importance sampling Monte Carlo ‘




An Intelligent Way to Sample
Configuration Space

‘ Use importance sampling Monte Carlo ‘




The General Scheme

Monte Carlo Sample
Configuration Space

Construct Initial
Basis




The Initial Basis (2D Example)




The Initial Basis (2D Example)

Q r azR

|
lP(()())Oce 2 ¢ 2




The Initial Basis (2D Example)

oqr a,R

, _
(1) 2 2
oo Xe e

Basis functions change each iteration




The Initial Basis (2D Example)

oqr a,R

, _
(1) 2 2
oo Xe e

Basis functions change each iteration




The Initial Basis (2D Example)

oqr a,R

, _
(1) 2 2
oo Xe e

Basis functions change each iteration

‘ Phase factors ‘




The Initial Basis (2D Example)

oqr a,R

, _
(1) 2 2
oo Xe e

Basis functions change each iteration

‘ Phase factors ‘

Will be made orthogonal to all previously
built states and normalized
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Effective size of basis grows each iteration
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Testing the Method

‘ 20,000 sampling points ‘

Active space consists
of all bound states

Total of 10 basis
functions used
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Iteration Number
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Moving on to 2D

2D PES and G matrix elements
constructed by S. Horvath
from a bicubic spline
interpolation of a grid of points
on which MP2/aug-cc-pVTZ
calculations were performed.

Highly anharmonic system with
a strong coupling observed
between 7oy and 7.

Our goal is to accurately
capture all states with up to 3
total quanta of excitation.

Horvath et al. J. Phys. Chem. A
2008, 112,12337-12344,

0.6 0.8 1.0 12 1.4 16 18 20 2.2 2.4
Yon,(A)
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A Taste of the Preliminary Results
2933.67 1308.01 2668.11
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YoF (A) Active space and basis contain
all states withupto 3 and 6
quanta respectively
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+67.19 +55.85
50,000 sampling points

B:=0.01,0.01
Statistics from 4 calculations
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Conclusions and Future Work

Developed a methodology that uses importance sampling
Monte Carlo and and evolving basis to intelligently sample
configuration space and minimize size of basis required

The method has been shown to be able to
accurately describe a highly anharmonic Morse oscillator

Promising preliminary proof of principle
calculations on F-(H,0)

Complete testing with F-(H,0) and perform benchmarking
calculations on higher dimensional systems to further test
method and explore its scaling

Couple algorithm with ab initio
electronic structure calculations
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Effect of B,

:

50,000 sampling points

10 basis functions

5 states in active space

5 statistically independent
calculations
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Effect of Size of Active Space
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Improving Methodology

‘Assignment Scheme ‘

~ . A\ |2
pl) IP(J)>LL
m,n o,p
Eigenstate | Basis function

(W) w2 )

Trial function with proper nodal
structure built out of previously
assigned states

Take linear combination of 2
eigenstates which maximally
overlap W/)

trial *
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‘Active Space Evolution ‘

Pl ¢ gl | gl)
{ VE
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‘ Define an active space: ‘
‘{lp(jﬂ)} _ {{ij(j)} ‘G Labeling based on order in which
" active ") active state is constucted

qu(j+l)} —s (p(j+1) | Basis functions outside of active
) active mafac”ve‘ space built out of active space
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‘Active Space Evolution ‘

Pl ¢ gl | gl)
{ VE

.

wl)  _wgl) These ba-15|s funcpons are fixed
msnactive msnactive for a series of N iterations
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‘Active Space Evolution ‘

Pl ¢ gl | gl)
{ VE

.

Q) _pl) | After N iterations: |

m<nactive m<nactive

| Size of active space grows by 1

wli+) _pli)

nactive - nactive

allowed to mix via diagonalization

‘ Members of new active space
of active space only H.

j+l) (j+1)
‘{q’m }ac five = (pm &active




