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Question: How may we best summarize what we know about a molecule ?

• structural properties such as bond length(s), bond strength, equilibrium force

constants

• spectroscopic properties: transition energies and relative intensities in pure

rotation, vibration-rotation and electronic spectroscopy, and the number and

energies of unobserved levels

Since the dawn of quantum mechanics, the central paradigm of

spectroscopic data analysis was to explain the patterns of observed

transition energies in terms of expressions for molecular level energies

as functions of vibrational and rotational quantum numbers.

However, this offers little help with

• collisional properties including virial coefficients, diffusion, thermal conductivity

and other transport properties, and various scattering cross sections
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Answer: By a compact, flexible, analytic potential energy
function !

But . . . . . . How do we determine that potential ?



‘Direct Potential Fits’
{For 3-D Van der Waals molecules since 1974, and for diatomics since ∼ 1990 }

• Simulate level energies as eigenvalues of some parametrized

analytic potential energy function V (r; {pj})

• Partial derivatives of observables w.r.t. parameters pj required for fitting are

generated readily using the Hellmann-Feynmann

theorem: ∂E(v, J)

∂pj
=

〈
ψv,J

∣∣∣∣
∂ V (r; {pj})

∂pj

∣∣∣∣ψv,J

〉

• Compare predicted transition energies with experiment, and

optimize potential parameters via an iterative least-squares fit
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Features

• final result is a global analytic potential energy function

• such a ‘global’ potential allows realistic predictions in ‘extrapolation’ region

outside the data range, and of non-spectroscopic properties

• yields full quantum mechanical accuracy

• readily accounts for Born-Oppenheimer breakdown (BOB), and/or

for Λ-doubling or 2Σ splittings, in terms of radial functions



Challenge . . . to develop analytic potential function forms

∗ flexible enough to fully represent extensive high-resolution data

∗ robust and ‘well behaved’ (no spurious extrapolation behaviour)

∗ compact and portable – defined by ‘modest’ no. of parameters

∗ incorporating appropriate physical limiting behaviour
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Challenge . . . to develop analytic potential function forms

∗ flexible enough to fully represent extensive high-resolution data
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∗ incorporating appropriate limiting long-range behaviour !

At long range, all molecular interactions become

V (r) # D − Cm1

rm1
− Cm2

rm2
− . . . . . .

so we want a function which incorporates this behaviour.

Morse/Long-Range (MLR) Potential

If we define uLR(r) =
Cm1

rm1
+

Cm2

rm2
+ . . . we can write

VMLR(r) = De

{
1 − uLR(r)

uLR(re)
e−β(r)·yp(r)

}2

r % re
−−−→ De −

(
2 De e−β∞

uLR(re)

)
uLR(r) = De −

Cm1

rm1
− Cm2

rm2
− . . .

in which β(r) = βMLR(r) = β∞ yp(r) + [1 − yp(r)]
N∑

i=0

βi yp(r)i

where β∞ ≡ β(r=∞) = ln{2 De/uLR(re)}



Improving the model – minding our p’s and q’s

e.g., For X(2Σ+)-state MgH including 2 terms in uLR(r) (C6 & C8) means we

must set p ≥ 4 . But in this case:

• yp(r) is very flat and close to

1.0 over much of the domain

⇒ a very high-order polynomial

required to describe variation

of exponent coefficient β(r)

⇒ polynomial would have very large

coefficients of alternating sign !
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Improving the model – minding our p’s and q’s

e.g., For X(2Σ+)-state MgH including 2 terms in uLR(r) (C6 & C8) means we

must set p ≥ 4 . But in this case:

• yp(r) is very flat and close to

1.0 over much of the domain

⇒ a very high-order polynomial

required to describe variation

of exponent coefficient β(r)

⇒ polynomial would have very large

coefficients of alternating sign !

MLR4,4(6; 18)

De/cm−1 11104.7(3)
re/Å 1.729682(5)
rref/Å re

C6/cm−1Å6 2.793×105

C8/cm−1 Å8 3.475×106

C10/cm−1 Å10 —
damping none
{p, q} {4, 4}

β0 −2.33867308
β1 −0.7759113
β2 −1.210606
β3 −0.541097
β4 −0.45237
β5 0.15537
β6 −0.2325
β7 2.6224951×103

β8 −5.2413692×104

β9 4.968244×105

β10 −2.59556525×106

β11 9.3721667×106

β12 −2.3536146×107

β13 4.190927×107

β14 −5.288707×107

β15 4.63423×107

β16 −2.6852×107

β17 9.26×106

β18 −1.44×106

dd 0.783



Improving the model – minding our p’s and q’s

e.g., For X(2Σ+)-state MgH including 3 terms in uLR(r) (C6, C8 & C10) means we

must set p ≥ 5 . But in this case:

• yp(r) is very flat and close to

1.0 over much of the domain

⇒ a very high-order polynomial

required to describe variation

of exponent coefficient β(r)

⇒ polynomial would have very large

coefficients of alternating sign !

So introduce yref
p =

rp − rref
p

rp + rref
p

and then define

βref
p,q(r) ≡ yref

p (r) β∞ +
[
1 − yref

p (r)
] N∑

i=0

βi [y
ref
q (r)]i

p must be bigger than the difference between

the highest and lowest inverse powers in uLR(r),

and hence it is relatively large,

but q can be smaller, which makes it

a better expansion variable !
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Improving the model – minding our p’s and q’s

e.g., For X(2Σ+)-state MgH including 3 terms in uLR(r) (C6, C8 & C10) means we

must set p ≥ 5 . But in this case:

• yp(r) is very flat and close to

1.0 over much of the domain

⇒ a very high-order polynomial

required to describe variation

of exponent coefficient β(r)

⇒ polynomial would have very large

coefficients of alternating sign !

So introduce yref
p =

rp − rref
p

rp + rref
p

and then define

βref
p,q(r) ≡ yref

p (r) β∞ +
[
1 − yref

p (r)
] N∑

i=0

βi [y
ref
q (r)]i

p must be bigger than the difference between

the highest and lowest inverse powers in uLR(r),

and hence it is relatively large,

but q can be smaller, which makes it

a better expansion variable !

MLR4,4(6; 18) MLR5,4(12)

De/cm−1 11104.7(3) 11104.90(4)
re/Å 1.729682(5) 1.7296838(2)
rref/Å re 2.3

C6/cm−1Å6 2.793×105 2.7755×105

C8/cm−1 Å8 3.475×106 3.4549×106

C10/cm−1 Å10 — 4.614×107

damping none none
{p, q} {4, 4} {5, 4}

β0 −2.33867308 −2.48904461
β1 −0.7759113 0.0851382
β2 −1.210606 0.7680269
β3 −0.541097 2.49903
β4 −0.45237 3.479727
β5 0.15537 4.24532
β6 −0.2325 3.04072
β7 2.6224951×103 1.1153
β8 −5.2413692×104 −1.8392
β9 4.968244×105 −1.793
β10 −2.59556525×106 6.634
β11 9.3721667×106 14.63
β12 −2.3536146×107 −1.86
β13 4.190927×107 −22.84
β14 −5.288707×107 −14.4
β15 4.63423×107

β16 −2.6852×107

β17 9.26×106

β18 −1.44×106

dd 0.783 0.762



Recall the challenge . . . to develop analytic potential function forms:

∗ able to accurately represent extensive high-resolution data
√

∗ robust and ‘well behaved’ (no spurious extrapolation behaviour)
√

∗ compact and ‘portable’ – defined by a ‘modest’ number of parameters
√

∗ incorporating appropriate limiting long-range behaviour !
√

While our extended MLR function meets all of these requirements,

a couple of further questions should be considered.



Recall the challenge . . . to develop analytic potential function forms:

∗ able to accurately represent extensive high-resolution data
√

∗ robust and ‘well behaved’ (no spurious extrapolation behaviour)
√

∗ incorporating appropriate limiting long-range behaviour !
√

∗ compact and ‘portable’ – defined by a ‘modest’ number of parameters
√

While our extended MLR function meets all of these requirements,

a couple of further questions should be considered.

• What about ‘damping’ of the inverse-power long-range

terms due to overlap of the electron distributions of the

interacting atoms ?

• What about the limiting short-range behaviour ?

Many years ago Bill Meath taught us that overlap of the electron distributions

of interacting atoms means that long-range potentials should actually include

‘damping functions’. This is readily incorporated into the MLR form by defining

uLR(r) = Dm1(r)
Cm1

rm1
+ Dm2(r)

Cm2

rm2
+ . . .

But what are these damping functions like ?



Consider Kreek-Meath calculations for two ground-state H atoms.
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But . . . the functional form chosen for the Dm(r) functions has implications

regarding the short-range behaviour of MLR potentials . . . . . .

Write MLR function in expanded form and consider its very small r behaviour

VMLR(r) = De

{
1 − 2

(
uLR(r)
uLR(re)

)
e−β(r)·yp(r) +

(
uLR(r)
uLR(re)

)2
e−2 β(r)·yp(r)

}

r very small
−−−→ De

(
uLR(r)
uLR(re)

)2
e+2 β(r=0) ∝ { uLR(r) }2



Thus, if uLR(r) is a simple inverse-power sum such as (say)

uLR(r) = C6
r6 + C8

r8 + C10
r10

then at very small distances VMLR(r) ∝ 1

r20
which is unphysically steep !

However . . . if the long-range term includes damping functions, then at very small

distances this VMLR(r) ∝
(

D10(r)
r10

)2
and the limiting short-range behaviour of the

potential is defined by the nature of those damping functions !
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MLR(r) ∝ r2 → 0



Thus, if uLR(r) is a simple inverse-power sum such as (say)

uLR(r) = C6
r6 + C8

r8 + C10
r10

then at very small distances VMLR(r) ∝ 1

r20
which is unphysically steep !

However . . . if the long-range term includes damping functions, then at very small

distances this VMLR(r) ∝
(

D10(r)
r10

)2
and the limiting short-range behaviour of the

potential is defined by the nature of those damping functions !

The Tang-Toennies form (1984) DTT
m (r) = 1 + e−bttr

∑m
k=0

(btt r)k

k! is not acceptable

since at very small distances DTT
m (r)
rm ∝ r , which would make V TT

MLR(r) ∝ r2 → 0

The Douketis-Scoles-Marchetti-Zen-Thakkar form (1982) DDS
m (r) =

(
1 − e

− bds r
m − cds r2√

m

)m

is acceptable since as r → 0 , DDS
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rm → {constant} and hence VMLR(r) → {constant}



Thus, if uLR(r) is a simple inverse-power sum such as (say)

uLR(r) = C6
r6 + C8

r8 + C10
r10

then at very small distances VMLR(r) ∝ 1

r20
which is unphysically steep !

However . . . if the long-range term includes damping functions, then at very small

distances this VMLR(r) ∝
(

D10(r)
r10

)2
and the limiting short-range behaviour of the

potential is defined by the nature of those damping functions !

The Tang-Toennies form (1984) DTT
m (r) = 1 + e−bttr

∑m
k=0

(btt r)k

k! is not acceptable

since at very small distances DTT
m (r)
rm ∝ r and hence V TT

MLR(r) ∝ r2 → 0

The Douketis-Scoles-Marchetti-Zen-Thakkar form (1982) DDS
m (r) =

(
1 − e

− bds r
m − cds r2√

m

)m

is acceptable since as r → 0 , DDS
m (r)
rm → {constant} and hence VMLR(r) → {constant}

However, within an MLR potential, an even better damping function is the

Modified Douketis-Scoles-M-Z-T form (2009) DmDS
m (r) =

(
1 − e

− bmds r
m − cmds r2√

m

)m−s

is recommended since at very small distances DmDS
m (r)
rm ∝ 1

rs and V mDS
MLR (r) ∝ 1

r2s !

In particular, s = 1/2 yields the theoretically predicted “united atom limit”

very short-range behaviour V mDS
MLR (r) ∝ 1/r !



e.g., compare short-range extrapolation behaviour of potentials with different

damping functions, determined from otherwise equivalent fits to data spanning

the entire potential well of MgH.

Inclusion of long-range

damping softens the

uLR(r) contribution to the

short-range repulsive wall,

but has no effect on the

quality of the potential in

the ‘data region’ (the well).

Different damping function

models give different very

short-range behaviour, but all

agree at ‘chemical energies’

of up to 100 000 cm−1
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VMLR(r) = De

{
1 − uLR(r)

uLR(re)
e−β(r)·yp(r)

}2

Inclusion of damping functions

softens the short-range growth

of uLR(r) so the exponent

coefficient β(r) no longer

needs to drop off sharply at

small r to compensate for

artificial 1/r20 growth

of the uLR(r) term.

This allows the

exponent coefficient β(r)

to be represented accurately

by a lower-order polynomial !
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Re. our analysis of 7453 data spanning the entire potential well of MgH(X 2Σ+) . . .

A model incorporating

damping functions tends

to require fewer exponent

polynomial fitting parameters

to achieve a given accuracy.

no damping in uLR(r) uLR(r) damped

MLR4,4(6; 18) MLR5,4(14) MLR5,4(11)

De/cm−1 11104.7(3) 11104.90(4) 11105.22(3)
re/Å 1.729682(5) 1.7296838(2) 1.7296846(1)
rref/Å re 2.3 2.55

C6/cm−1Å6 2.793×105 2.7755×105 2.7755×105

C8/cm−1 Å8 3.475×106 3.4549×106 3.4549×106

C10/cm−1 Å10 — 4.614×107 4.614×107

damping none none YES
{p, q} {4, 4} {5, 4} {5, 4}

β0 −2.33867308 −2.48904461 0.90643023
β1 −0.7759113 0.0851382 0.2756464
β2 −1.210606 0.7680269 2.0575917
β3 −0.541097 2.49903 3.315312
β4 −0.45237 3.479727 2.71098
β5 0.15537 4.24532 0.86408
β6 −0.2325 3.04072 0.47496
β7 2.6224951×103 1.1153 1.8969
β8 −5.2413692×104 −1.8392 0.308
β9 4.968244×105 −1.793 −5.37
β10 −2.59556525×106 6.634 −7.06
β11 9.3721667×106 14.63 −2.82
β12 −2.3536146×107 −1.86
β13 4.190927×107 −22.84
β14 −5.288707×107 −14.4
β15 4.63423×107

β16 −2.6852×107

β17 9.26×106

β18 −1.44×106

dd 0.783 0.762 0.776



Conclusions

Introducing damping functions into the definition of uLR(r) in the

MLR potential function form:

VMLR(r) = De

{
1 − uLR(r)

uLR(re)
e−β(r)·yp(r)

}2

with uLR(r) = Dm1(r)
Cm1

rm1
+ Dm2(r)

Cm2

rm2
+ . . .

• gives a better physical description of the long-range tail of the
potential energy function

• gives a physically more realistic (less steep!) short-range
potential function wall

• can yield a more compact (fewer parameters) model for the
potential energy function



Conclusions

Introducing damping functions into the definition of uLR(r) in the

MLR potential function form:

VMLR(r) = De

{
1 − uLR(r)

uLR(re)
e−β(r)·yp(r)

}2

with uLR(r) = Dm1(r)
Cm1

rm1
+ Dm2(r)

Cm2

rm2
+ . . .

• gives a better physical description of the long-range tail of the
potential energy function

• gives a physically more realistic (less steep!) short-range
potential function wall

• can yield a more compact (fewer parameters) model for the
potential energy function

Questions to be resolved

∗ is there a unique ‘best’ damping function form ?

∗ can a potential using s = −1/2 Douketis-Scoles damping functions be

constrained to give quantitative united-atom-limit behaviour V (r) # − Z1Z2 e2

4πε0 r ?
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Diatomic DPF analyses may be performed ‘routinely’ using

program DPotFit (‘Diatomic Potential Fits’ )
{ available with manual from http://leroy.uwaterloo.ca/programs/}

which performs DPF fits to spectroscopic data and can:

• simultaneously treat any combination of microwave, infrared, electronic,

fluorescence series, tunneling level widths, & photo-association data

∗ for one or multiple isotopologues

∗ for one or multiple electronic states

• take account of atomic-mass dependent Born-Oppenheimer breakdown

• take account of Λ-doubling of singlet states or 2Σ splittings

• use “sequential rounding and re-fitting ” to automatically yield fitted

parameters with a minimum number of significant digits and no loss of precision

in representing data

• use Watson’s “robust ” data weighting technique to damp the effect of “outlier”

observations which give anomalously large discrepancies with the model, and

might unreasonably mislead a fit.

• use four types of potential forms: EMO, MLR, DELR, or polynomials.


