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Question: How may we best summarize what we know about a molecule ?

e structural properties such as bond length(s), bond strength, equilibrium force
constants

e spectroscopic properties: transition energies and relative intensities in pure

rotation, vibration-rotation and electronic spectroscopy, and the number and

energies of unobserved levels

Since the dawn of quantum mechanics, the central paradigm of
spectroscopic data analysis was to explain the patterns of observed
transition energies in terms of expresstons for molecular level energies
as functions of vibrational and rotational quantum numbers.

However, this offers little help with

e collisional properties including virial coefficients, diffusion, thermal conductivity

and other transport properties, and various scattering cross sections
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Answer: By a compact, flexible, analytic potential energy
function !

But ...... How do we determine that potential ?



‘Direct Potential Fits’
{For 3-D Van der Waals molecules since 197/, and for diatomics since ~ 1990 }

e Simulate level energies as eigenvalues of some parametrized

analytic potential energy function V'(r;{p;})

e Partial derivatives of observables w.r.t. parameters p; required for fitting are

generated readily using the Hellmann-Feynmann

theorem: OE(v,J) OV (ri{p;j})
— 77DU,J ¢U’J

e (Compare predicted transition energies with experiment, and

optimize potential parameters via an iterative least-squares fit
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Features

e final result is a global analytic potential energy function

e such a ‘global” potential allows realistic predictions in ‘extrapolation’ region

outside the data range, and of non-spectroscopic properties
e yields full quantum mechanical accuracy

e readily accounts for Born-Oppenheimer breakdown (BOB), and/or

for A-doubling or ?Y splittings, in terms of radial functions



Challenge ... to develop analytic potential function forms

* X Xx X

flexible enough to fully represent extensive high-resolution data
robust and ‘well behaved’ (no spurious extrapolation behaviour)
compact and portable — defined by ‘modest’ no. of parameters

incorporating appropriate physical limiting behaviour
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compact and portable — defined by ‘modest’ no. of parameters

* X Xx X

incorporating appropriate limiting long-range behaviour !

At long range, all molecular interactions become

so we want a function which incorporates this behaviour.

Morse/Long-Range (MLR) Potential
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Improving the model — minding our p’s and q’s
e.g., For X(*YT)-state MgH including 2 terms in uir(r) (Cs & Cs) means we

must set p > 4. But in this case:
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Recall the challenge ... to develop analytic potential function forms:

x able to accurately represent extensive high-resolution data

* robust and ‘well behaved’ (no spurious extrapolation behaviour)

x compact and ‘portable’ — defined by a ‘modest’ number of parameters
*x incorporating appropriate limiting long-range behaviour!

While our extended MLR function meets all of these requirements,

a couple of further questions should be considered.

<O <0<
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*x incorporating appropriate limiting long-range behaviour!

x compact and ‘portable’ — defined by a ‘modest’ number of parameters

While our extended MLR function meets all of these requirements,

a couple of further questions should be considered.

e What about ‘damping’ of the inverse-power long-range
terms due to overlap of the electron distributions of the

interacting atoms ?

e What about the limiting short-range behaviour ?

<O <0<

Many years ago Bill Meath taught us that overlap of the electron distributions

of interacting atoms means that long-range potentials should actually include

‘damping functions’. This is readily incorporated into the MLR form by defining

Chmn Chmn
urr(r) = Dp,(7) L+ Dy, (r) 2 4

ri2

But what are these damping functions like ?



Consider Kreek-Meath calculations for two ground-state H atoms.
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But ... the functional form chosen for the D, (r) functions has implications
regarding the short-range behaviour of MLR potentials ......
Write MLR function in expanded form and consider its very small r behaviour
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Thus, if urr(r) is a simple inverse-power sum such as (say)

C C. C
upr(r) = 2 + £ + ¢
1
then at very small distances Vjgr(r) o —;  which is unphysically steep !
r
However ... if the long-range term includes damping functions, then at very small

2
distances this Vygr(r) (D%ér)) and the limiting short-range behaviour of the

potential is defined by the nature of those damping functions!
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e.g., compare short-range extrapolation behaviour of potentials with different

damping functions, determined from otherwise equivalent fits to data spanning

the entire potential well of MgH.

Inclusion of long-range
damping softens the
urr(r) contribution to the
short-range repulsive wall,
but has no effect on the
quality of the potential in
the ‘data region’ (the well).

Different damping function
models give different very
short-range behaviour, but all

agree at ‘chemical energies’
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VMLR(T) — Qe{l o upRr(r)

urR(re)

Inclusion of damping functions
softens the short-range growth
of urr(r) so the exponent
coefficient B(r) no longer
needs to drop off sharply at
small v to compensate for
artificial 1/r* growth

of the urr(r) term.

This allows the
exponent coefficient ((r)
to be represented accurately

by a lower-order polynomial!
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Re. our analysis of 7453 data spanning the entire potential well of MgH (X 227) ...

A model incorporating
damping functions tends

to require fewer exponent
polynomial fitting parameters

to achieve a given accuracy.
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Conclusions

Introducing damping functions into the definition of u;g(r) in the

MLR potential function form:
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Wlth ULR<T> = Dm1<7“>

® gives a better physical description of the long-range tail of the
potential energy function

e gives a physically more realistic (less steep!) short-range
potential function wall

e can yield a more compact (fewer parameters) model for the
potential energy function
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with ULR<T> — Dm1<7“>

® gives a better physical description of the long-range tail of the
potential energy function

e gives a physically more realistic (less steep!) short-range
potential function wall

e can yield a more compact (fewer parameters) model for the
potential energy function

Questions to be resolved

x 1S there a unique ‘best” damping function form 7

% can a potential using s = —1/2 Douketis-Scoles damping functions be
AV

constrained to give quantitative united-atom-limit behaviour V(r) ~ el
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Diatomic DPF analyses may be performed ‘routinely’ using
program DPotFit (‘Diatomic Potential Fits’)

{ available with manual from http://leroy.uwaterloo.ca/programs/ }

which performs DPF' fits to spectroscopic data and can:

e simultaneously treat any combination of microwave, infrared, electronic,

fluorescence series, tunneling level widths, & photo-association data

« for one or multiple isotopologues

x for one or multiple electronic states
e take account of atomic-mass dependent Born-Oppenheimer breakdown
e take account of A-doubling of singlet states or *Y splittings
e use “sequential rounding and re-fitting” to automatically yield fitted

parameters with a minimum number of significant digits and no loss of precision

in representing data

44

e use Watson’s “robust” data weighting technique to damp the effect of “outlier”
observations which give anomalously large discrepancies with the model, and

might unreasonably mislead a fit.

e use four types of potential forms: EMO, MLR, DELR, or polynomials.



