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Intermolecular Potentials for Rare-Gas Pairs

• Under serious study for ∼ 50 years

• Early work used scattering cross-sections or bulk property data (virial, viscosity,

diffusion & thermal diffusion coefficients). However:

– resulting estimates of well depths and equilibrium distances depended on

what property was being fitted and were heavily model-dependent.

Also: De and re values obtained sensitive to form of model potential.

– used model analytic potential functions which failed to incorporate

theoretically known inverse-power long-range behaviour

VLR � D − C6

r6
− C8

r8
− C10

r10
− . . .

• High resolution spectroscopic data not available until relatively recently

• Later semi-empirical work (most notably by Ronald A. Aziz and co-workers)

– potential functions did incorporate appropriate long-range behaviour

– simultaneously considered a range of bulk properties

However :



. . . . . . however :

– Those analyses were based on manual trial-and-error ‘fits’ !

– The ‘HFD-B’ potential function used has significant shortcomings:

VHFD(r) = Ae−αr−βr2 − F (r)

{
C6

r6
+
C8

r8
+
C10

r10

}

F (r) =

{
e−[d(re/r)−1]2 r/re < d

1 r/re ≥ d

∗ second and higher derivatives of F (r) (and hence of the potential!)

are discontinuous at r/re = d

[ F (r) was introduced to prevent 1/rn singularities as r → 0 from causing short-range

potential function turnover.]

∗ parameters A, α and β allow limited degree of flexibility

∗ key physical properties De and re not defining parameters

∗ Gives poor agreement with modern MW and high-resolution UV data !



Objective:

Determine a new set of empirical analytic potentials for the rare-gas pairs:

• using an objective, quantitative ‘direct-potential-fit’ procedure that fully exploits

all available spectroscopic data

• based on an improved potential function form which takes account of ‘damping

function’ behaviour and whose derivatives are smooth everywhere
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{incorporates both theoretically known Cm’s and damping functions Dm(r) }

where β(r) = βMLR(r) = β∞ yp(r) + [1− yp(r)]

N∑
i=0

βi yp(r)
i

with β∞ ≡ β(r=∞) = ln{2De/uLR(re)} and yp(r) =
rp − re

p

rp + rep



‘Direct Potential Fits’
{For 3-D Van der Waals molecules since 1974, and for diatomics since ∼ 1990 }

• For spectroscopy: simulate level energies as eigenvalues of some parametrized

analytic potential energy function V (r; {pj})
νobs(v

′, J ′; v′′, J ′′) = E(v′J ′)− E(v′′, J ′′)

Partial derivatives of observables w.r.t. parameters pj that are required for

fitting are generated readily using the Hellmann-Feynman theorem:

∂E(v, J)

∂pj
=

〈
ψv,J

∣∣∣∣ ∂ V (r; {pj})
∂pj

∣∣∣∣ψv,J
〉

Compare predicted transition energies with experiment, and optimize potential

parameters via an iterative least-squares fit.

Features

• final result is a global analytic potential energy function

• such a ‘global’ potential allows realistic predictions in ‘extrapolation’ region

outside the data range, and of non-spectroscopic properties

• yields full quantum mechanical accuracy



• For virial coefficients:
PV
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= 1 + B(T )
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)
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where

Bcl(T ) = −2π ÑA
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]
r2 dr
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Partial derivatives of B(T ) w.r.t. parameters pj required for fitting are

generated readily by differentiating the above expressions:
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e−V (r)/kBT r2 dr , . . . etc.
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Virial coefficients depend on an

average of a function of the

potential.

At low temperatures their values

are dominated by the attractive

potential well, and at high

temperatures by the repulsive

potential wall.

Their ‘non-local’ dependence on

the potential function means that

unless one has accurate B(T )

values extending over a very wide

temperature range, their values

will not be very sensitive to

the shape of the potential.



How do we simultaneously fit to data of different types ?

Types of data considered in these analyses

type magnitude uncertainty

microwave 0.2 to 0.6 cm−1 10−8 to 3×10−7 cm−1

high-resolution UV ∼ 77 000 cm−1 0.001 to 0.005 cm−1

medium-resolution UV (rotat. resolved) ∼ 100 000 cm−1 0.02 to 0.2 cm−1

low-resolution UV (band heads) ∼ 80000 cm−1 0.2 to 0.3 cm−1

virial coefficients −400 to +17
[
cm3

mol

]
0.1 to 6

[
cm3

mol

]

Answer :

Fit minimizes the overall “dimensionless root-mean-square residual ”

DRMSD ≡ dd =

√√√√ 1

Ndat

Ndat∑
i=1

(
ycalc(i)− yobs(i)

ui

)2

Note: we can also characterize the quality of agreement with subsets of data

by generating values of dd(MW) or dd(virials) or . . .



Data for rare gas pairs considered to date.

Ne Ar Kr Xe

Ne virial coefft. virial coefft. virial coefft. virial coefft.

high-res UV MW: v = 0 MW: v = 0 MW: v = 0
(v = 0− 1)

Ar — virial coefft. virial coefft. virial coefft.

med-res UV MW: v = 0 high-res UV
(v = 0− 5) (v = 0− 1)

MW: v = 0

Kr — — virial coefft. virial coefft.

med-res UV MW: v = 0
(v = 0− 2)

low-res UV
(v = 0− 9)

Xe — — — virial coefft.

high-res UV
(v = 0− 1)

low-res UV
(v = 0− 9)



Results for Ne-Kr: fitting parameters are De , re and exponent coefficients βi

# expon.
param. # data dd(MW) dd(virials) dd(total) De/cm

−1 re / Å

All data – MW and virials

1 48 0.423 3.312 2.110 49.84(3) 3.65046(6)

2 48 0.553 1.511 1.043 47.74(34) 3.65202(23)

3 48 0.442 1.525 1.019 47.96(35) 3.65209(29)

4 48 0.403 1.493 0.990 48.27(48) 3.6492(15)

MW data alone

1 29 0.418 — 0.418 49.84(1) 3.65046(1)

2 29 0.412 — 0.412 49.48(84) 3.65074(59)

Virial data alone

1 19 — 1.493 1.493 22.(58) 5.2(48)

Aziz’s HFD-B potential

29 15776. ∼ 1.5 — 49.82 3.6196



Aziz: HFD-B
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Compare our potential

with that of Aziz.

Check that the short-range

extrapolation behaviours of

these potentials are realistic.

As r → 0 potential

dominated by Coulomb

repulsion of the nuclei.

V (r) → − q1 q2
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Looking good !



Results to date !

Compare our fitted potential parameters (first entry for each case) with those of Aziz (in italic font).

Ne Ar Kr Xe
De re De re De re De re

Ne 29.31(14) 3.099(10) 47.26(53) 3.4799(6) 47.95(35) 3.6523(3) 52.65(61) 3.8914(4)

29.36 3.091 46.98 3.489 49.75 3.621 51.58 3.861

Ar — — 99.63(2) 3.7557(4) 117.0(2) 3.8955(3) 129.8(4) 4.0958(3)

99.55 3.7557 116.28 3.8810 131.10 4.0668

Kr — — — — 139.57(21) 3.993(35) 160.87(33) 4.2036(1)

139.84 4.0080 162.28 4.1740

Xe — — — — — — 192.14(52) 4.3761(7)

196.56 4.3656

Compare dd(spectroscopy) for present fitted potentials with those of Aziz (in italic font).

Ne Ar Kr Xe
present Aziz present Aziz present Aziz present Aziz

Ne 0.126 0.190 3.799 1.8×105 0.420 1.6×104 0.143 1.6×104
Ar — — 1.052 3.30 1.450 7.6×103 0.545 2.0×103
Kr — — — — 1.211 2.723 0.0808 7.7×103
Xe — — — — — — 0.330 18.90



Preliminary Conclusions

• Our direct fits to the combination of available spectroscopic data with virial

coefficient data give realistic potentials whose De and re values are in

reasonable agreement with those for the best previous empirical potentials

• Predictions of modern spectroscopic data generated from the older empirical

potentials are often many orders of magnitude worse than for our new potentials.

• For most systems, the short range extrapolation behaviour of our new MLR

potentials is physically reasonable, and as good as that for Aziz’s potentials.

∗ However . . . this is not always the case !



Results for Xe2 : fitting parameters are De , re and exponent coefficients βi

# expon. dd dd dd dd
param. # data (hi-res UV) (low-res UV) (virials) (total) De/cm

−1 re / Å

All data – High and Low Resolution UV and virials

1 231 4.875 7.863 5.632 5.354 174.4(28) 4.394(17)

2 231 2.400 6.253 6.007 3.446 172.8(18) 4.391(11)

3 231 0.362 1.093 0.947 0.557 191.76(68) 4.3775(18)

4 231 0.363 1.095 0.919 0.555 192.07(85) 4.3776(18)

High Resolution UV and virial data alone

1 205 4.977 — 4.179 4.912 172.7(27) 4.389(16)

2 205 2.020 — 5.277 2.483 171.6(14) 4.3860(81)

3 205 0.363 — 0.930 0.443 192.28(87) 4.3774(15)

4 205 0.364 — 0.785 0.419 198.5(28) 4.3768(14)

Virial data alone

1 18 — — 0.311 0.311 294.(5) 3.915(12)

2 18 — — 0.309 0.309 298.(18) 3.905(54)

Aziz’s HFD-B potential

20.17 0.818 — — 196.54 4.3656
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and our very short-range
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We have a problem !



Conclusions !

• Our direct fits to the combination of available spectroscopic data with virial

coefficient data give realistic potentials whose De and re values are in

reasonable agreement with those for the best previous empirical potentials

• Predictions of modern spectroscopic data generated from the older empirical

potentials are often many orders of magnitude worse than for our new potentials.

• For most systems, the short range extrapolation behaviour of our new MLR

potentials is physically reasonable, and as good as that for Aziz’s potentials.

∗ However . . . this is not always the case !

• The problem with the short-range behaviour of our Xe2 potential reflects the fact

that the spectroscopic data (mainly sensitive to the potential well) and available

virial data do not accurately define the short-range potential wall.

• To address this Xe2 problem and improve our treatment of the other systems,

our future work will incorporate experimental transport properties (viscosity,

diffusion and thermal diffusion coefficients) into our ‘direct-potential-fit’ data

analyses.



non-expanded Tm

dispersion energy terms
for ground-state H atoms

5 10 15 20

10-7

10-5

10-3

10-1

101

103

m=6

m=8

m=10

expanded Cm /r m

r /a0

en
er

gy
/h

ar
tr
ee

1 2 0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Dm(r)

r / Å

Douketis-Scoles
functions for (s = 0, ½, 1)

m = 6

m = 8

m = 10

Damping Functions
for ground-state

H atoms


