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Selected molecules offer unique sensitivity to probe new physics:
by precision measurements, Standard Model predictions and alternative theories can be tested
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 - electric dipole moment of the electron
because of huge internal fields in polar molecules
(YbF, PbF, PbO, ThO, WC, HfF+)

 - time-variation of the constants
because of high sensitivity of tunneling to mass (NH3)
or close-lying states with different shifts (CO)

 - (nuclear-spin dependent) parity violation
because of close-lying rotational and vibrational states with 
opposite parity (BaF, SrF, RaF)
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Cold molecules offer increased sensitivity and precision:
- at low temperatures, fewer states are populated
- precision of measurements ultimately limited by interaction time 
             → trapped molecules / fountains / slow beams

The ultimate experiment is done by precision spectroscopy 
on trapped ultracold molecules 

 - electric dipole moment of the electron
because of huge internal fields in polar molecules
(YbF, PbF, PbO, ThO, WC, HfF+)

 - time-variation of the constants
because of high sensitivity of tunneling to mass (NH3)
or close-lying states with different shifts (CO)

 - (nuclear-spin dependent) parity violation
because of close-lying rotational and vibrational states with 
opposite parity (BaF, SrF, RaF)



DirectIndirect

Techniques

Carr, Demille, Krems, Ye: special issue on cold molecules, New Journal of Physics 11 055049 (2009)



Stark Deceleration

- Can be used to decelerate neutral molecules
- First succesfully demonstrated in 1999:

- Based on interaction of electric dipole with electric fields
- Favorable molecules: light with large dipole moment

OH, CO, NH3, NH, H2CO, H2O
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Upot = WStark

WStark = −�µ · �E

�FStark = −�∇WStark
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Molecules in low-field seeking states gain Stark energy at the expense of kinetic energy

Stark decelerator: principle of operation
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Stark decelerator: schematic overview

Electric fields: 40 kV / 4 mm
Switched on/off in <1 µs

Number of deceleration stages: ~100



Example measurements:
deceleration of OH molecules
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OH molecules

Tunable velocity range: 
25-650 m/s

Completely state-selected 
packets

Ideal starting point for 
collision experiments

Joop J. Gilijamse, Steven Hoekstra, Sebastiaan Y. T. van de Meerakker, 
Gerrit C. Groenenboom, and Gerard Meijer
Science 313 1617-1620 (2006)
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Example measurements:
electric trapping

Trap on

S. Hoekstra et al, PRL 98, 133001 (2007)



Towards larger and heavier molecules
• High-Z enhancements for many fundamental physics tests

The challenges:

Larger mass requires a longer decelerator - but long decelerators suffer from instabilities...

Stark curves of heavy molecules are unfavorable: high-field seeking!

(J,M)

Stark curves of SrF



Ring decelerator: molecular conveyer belt
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First realization of ring decelerator (CO deceleration): 
Osterwalder, PRA 81 51401 (2010)
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First realization of ring decelerator (CO deceleration): 
Osterwalder, PRA 81 51401 (2010)

Advantages of a ring decelerator:

- Molecules remain in low electric fields, so low-field seeking part of Stark 
curve can be used.

- Inherently stable -> no limit to the length

Challenges: 

- Electronics



Numerical calculations: acceptance
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Deceleration and trapping of heavy diatomic molecules using a ring decelerator
J. van den Berg, S. Hoekman, E. Prinsen, S.Hoekstra, arXiv:1104.4328 (2011)  



Numerical calculations: acceptance
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Deceleration and trapping of heavy diatomic molecules using a ring decelerator
J. van den Berg, S. Hoekman, E. Prinsen, S.Hoekstra, arXiv:1104.4328 (2011)  



Decelerator for heavy molecules
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Decelerator for heavy molecules



Distance between ring-electrodes: 0.9 mm
8 Sets of electrodes, Phase-shifted sine waves (30 kHz - DC)
Voltage applied: ±5 kV
Total length: ~ 5 meter, ~3500 electrodes

Decelerator for heavy molecules



Now building @ KVI:



Not limited to SrF

At the KVI we can also produce radioactive species (RaF, RaO)

Many of these molecules are also promising lasercooling candidates

Lasercooled RaF as a promising candidate to 
measure molecular parity violation

T. Isaev, S. Hoekstra, R. Berger
Phys. Rev. A 82 52521 (2010)



Conclusions
- We are setting up a unique new experiment to decelerate and trap heavy diatomics molecules
- The goal is to perform precision spectroscopy on ultracold and trapped heavy diatomic molecules
- The ring decelerator is a general device, not limited to SrF
- First trapping experiments (NH3) planned this summer, first deceleration of SrF in 2012
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