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I. SOME INTRODUCTORY FACTS

1) The variational method is the most reliable method to resolve
the (ro)vibrational Schrodinger equation and therefore to compute
accurately the (ro)vibrational spectra of a molecule.

2) The literature dealing with the variational calculation of the
spectra of two-, three- and four-atom molecules is extensive.

3) For five- and six-atom molecules the number of articles begins
to decrease dramatically. For molecules with more than six atoms
the number of works where the variational method is rigorously
used is extremely small.

4) The amount of experimental (ro)vibrational data of large
molecules is extensive.
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II. THE CHALLENGE

For thirty years different research groups have developed new ideas
in order to make computationally feasible the calculation of the
(ro)vibrational spectra of large molecules with the variational
method.

In the following two talks we will describe a new scheme.
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III. THE ONE DIMENSIONAL (1D) PROBLEM

Suppose we want to calculate variationally some of the lowest
eigenstates of the 1D dimensional Hamiltonian

Ĥ(x) =
ω

2

(
− d2

dx2
+ x2

)
+ Vanhar(x).

1) We define a basis set of 1D harmonic functions

| n〉 = Pn(x)exp

(
−1

2
x2
)
, with n = 0, 1, 2, 3, · · · , b,

where Pn(x) is a normalized Hermite polynomial.
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2) We calculate the elements of the H matrix

〈n′ | Ĥ | n〉 =

∫
Pn′(x)Ĥ(x)Pn(x)exp

(
−x2

)
dx ,

The potential matrix elements are calculated using N ≥ b + 1
Gauss-Hermite quadrature points

〈n′ | V | n〉 =
N∑

k=1

wkPn′(xk)V (x)Pn(xk) + err(N),

until err(N) is small enough for a given value of b.
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3) We diagonalize the H matrix for b = 1, 2, 3, · · · with sizes
(2× 2), (3× 3), (4× 4) · · · until the lowest eigenenergies converge
to a given accuracy.
EVEN IN THE WORST CASE the number of basis set functions
b + 1 < 200 and the number of Gauss quadrature points N < 200.

1D VARIATIONAL CALCULATIONS ARE
COMPUTATIONALLY EASY.
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IV. THE TWELVE DIMENSIONAL (12D) PROBLEM:
PRODUCT BASIS SET+PRODUCT GAUSS GRID
Suppose we want to calculate some of the lowest eigenstates of the
12D dimensional Hamiltonian

Ĥ(x1, · · · , x12) =
12∑
c=1

ωc

2

(
− ∂2

∂x2c
+ x2c

)
+ Vanhar(x1, · · · , x12).
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1) We define a 12D product basis set of (b + 1)12 basis functions
by multiplying 1D harmonic functions

| n1 · · · n12〉 = Pn1(x1) · · ·Pn12(x12)exp

(
−1

2

12∑
c=1

x2c

)
,

with nc = 0, 1, 2, 3, · · · , b for c = 1, · · · , 12.
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2) We calculate the elements of the H matrix

〈n′1 · · · n′12 | Ĥ | n1 · · · n12〉 =∫
· · ·
∫

Pn′1
(x1) · · ·Pn′12

(x12)Ĥ(x1, · · · , x12)

×Pn1(x1) · · ·Pn12(x12)exp

(
−

12∑
c=1

x2c

)
dx1 · · · dx12.
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The potential matrix elements are calculated using
N12 ≥ (b + 1)12 Gauss-Hermite quadrature points

〈n′1 · · · n′12 | V (x1, · · · , x12) | n1 · · · n12〉 =
N∑

k1=1

· · ·
N∑

k12=1

wk1 · · ·wk12Pn′1
(x1) · · ·Pn′12

(x12)

V (x1, · · · , x12)Pn1(x1) · · ·Pn12(x12) + err(N),

until err(N) is small enough for a given value of b.

3) We diagonalize H for b = 1, 2, 3, · · · with sizes (4096× 4096),
([5.3× 105]× [5.3× 105]), ([1.7× 107]× [1.7× 107]) · · · until the
lowest eigenenergies converge to a given accuracy.
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Even in the best case b = 10 and the number of basis set functions
is (b + 1)12 > 1012 and the number of quadrature points is
N12 > 1012.
Considering that the V matrix is non-sparse (in some cases
the T matrix is also non-sparse):

1) We have to calculate a Hamiltonian matrix of dimensions
1012 × 1012/2=0.5 YB for direct diagonalization (the combined
space of all computer hard drives in the world does not amount to
even one yottabyte) (problem in memory)

2) We have to make ∼ 1012×3 = 1036 operations (problem in
computer time).

3) We have to calculate vectors with sizes of 1012=8000 GB for
iterative eigensolvers ( problem in memory)
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CONCLUSION: The variational method scheme described for
1D is not suitable with 12 dimensions =⇒
”Curse of the dimensionality” for both the product basis set and the
quadrature grid.
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V. THE PRODUCT BASIS SET+PRODUCT GAUSS GRID
SCHEME: WHY IS SO EXPENSIVE?
With this scheme we are considering:
1) The only way to represent accurately the wavefunctions is
by expanding them in terms of (b + 1)D product basis functions

Φ =
b∑

n1=0

· · ·
b∑

nD=0

Cn1,··· ,nDφn1···nD + err(b).

2) The integrands must be written as linear combinations of
(2N − 1)D monomials x l11 · · · x

lD
D as

Φn′1···n′DV (x1, · · · , xD)Φn1···nD =
2N−1∑
l1=1

...

2N−1∑
lD=1

Al1,··· ,lDx
l1
1 · · · x

lD
D + err(N).

These two assumptions are not necessarily true.
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One way to effectively reduce the number of product basis
set functions
If the product basis set functions are the eigenfunctions of Ĥ0 and
Ĥ = Ĥ0 + Ĥ ′ (Ĥ ′ < Ĥ0) we can prune the product basis set by
selecting those product basis functions with zeroth-order energies
E 0
n1···nD ≤ T by using a restriction like

D∑
c=1

αcnc ≤ b.

=⇒ THIS TALK.
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Figure 1: Product basis set n1 ≤ 10 and n2 ≤ 10.
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Figure 2: Pruned basis set n1 + n2 ≤ 10.
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Since we can reduce the number of basis set functions we can also
reduce the number of quadrature points.

One way to effectively reduce the number of product
quadrature points is to employ non-product quadrature grids as
Smolyak. This works when an efficient pruning condition is
possible and the potential is smooth enough =⇒ THIS TALK.
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VI. PRUNED PRODUCT BASIS SET + NON-PRODUCT
GRIDS SCHEME

This scheme enables us to partially overcome the ”Curse of
dimensionality” when the wavefunctions can be accurately
represented in a pruned product basis set and the potential is
smooth enough.
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Why?

A) Because we can expand accurately the wavefunctions in terms

of ∼ (b+D)!
b!D! basis functions (∼ (b + 1)D with a product basis set).

B) Because we can expand accurately the integrands in terms of

∼ (d+D)!
d!D! necessary monomials x l11 · · · x

lD
D with l1 + · · ·+ lD ≤ d

(∼ (d + 1)D with a product Gauss grid).

For large dimensional systems D ≥ 5

(b + D)!

b!D!
<< (b + 1)D , with

(d + D)!

d!D!
<< (d + 1)D
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Table 1: Number of monomials of degree up to d (necessary) and number
of total monomials (useless+necessary) exactly integrated by a product
12D Gauss grid of (Int(d/2) + 1)D points, 0 ≤ l1 + l2 + ...+ l12 ≤ d .

d good total PG points
(d+D)!
d!D! (d + 1)D

3 4.55 ×102 1.68×107 4.10×103

5 6.19 ×103 2.18×109 5.31×105

7 5.04 ×104 6.87×1010 1.68×107

9 2.94 ×105 1.00×1012 2.44×108

11 1.35 ×106 8.92×1012 2.18×109

13 5.20 ×106 5.67×1013 1.38×1010

15 1.74 ×107 2.81×1014 6.87×1010

17 5.19 ×107 1.16×1015 2.82×1011

19 1.41 ×108 4.10×1015 1.00×1012

21 3.55 ×108 1.29×1016 3.14×1012

23 8.34 ×108 3.65×1016 8.92×1012

25 1.85 ×109 9.54×1016 2.33×1013
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CONCLUSIONS
1) Product Gauss quadrature grids are too good if the basis
product set can be pruned and the potential is smooth: they
exactly integrate the set of necessary monomials and a larger
number of useless monomials.

2) Non-product quadrature grids are designed to exactly
integrate only the set of necessary monomials and therefore
they have a lesser number of quadrature points that the smallest
Gauss product grid that can exactly integrate the same set of
necessary monomials.
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Example

Table 2: Total number of non-product Smolyak quadrature points for
12D considering at least degree 0 ≤ l1 + ...+ l12 ≤ d .

d w(x) = exp(−x2) PG

3 25 4096
7 2097 1.68× 107

11 47529 2.18× 109

15 585033 6.87× 1010

19 4.87× 106 1012

23 3.05× 107 8.91× 1012

27 1.53× 108 5.70× 1013

31 6.35× 108 2.81× 1014
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3) Within non-product quadrature grids the Smolyak
quadrature grids are a attractive option since:

A) All the effort is 1D: to calculate sequences of quadrature rules
Q i (xc) (i = 1, · · · , imax

c ), c = 1, · · · ,D.

B) We can consider different 1D weight functions.

C) Different definitions of the set of necessary monomials
0 ≤ f (l1, l2, ..., lD) ≤ d can be used.

D) No limits for D. No limits for d .

E) They have structure.

In the next talk we present a example applied to the calculation of
the vibrational levels of the C2H4 molecule, a 12D case.
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