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I. THE HAMILTONIAN AND THE BASIS SET
Watson Hamiltonian for J = 0
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The vibrational wavefunctions are expanded in a pruned product
basis set of harmonic basis functions φn(qc), n = 0, · · · , b and
c = 1, · · · , 12

Φi =
∑

0≤n1+···+n12≤b
C i
n1,··· ,n12φn1 · · ·φn12 + err(b),
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II. THE POTENTIAL
In this work we used the quartic force field in curvilinear symmetry
coordinates determined by Martin et al at the ab initio level of
theory CCSD(T)/cc-pVTZ
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This potential was morsified in order to improve the representation
of the anharmonicity of the potential for the C−H stretch
coordinates.
The non-product quadrature we propose can be used with general
potentials, a force field is not necessary.
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III. THE NON-PRODUCT SMOLYAK QUADRATURE GRID
Since the product basis set can be pruned and the potential is
smooth the integrands to evaluate can be accurately expanded in
terms of a restricted set of monomials ql11 · · · q

l12
12 as

Φn′1···n′12V (q1, · · · , q12)Φn1···n12

=
∑

0≤l1+···+lD≤d
Al1,··· ,l12q

l1
1 · · · q

l12
12 + err(d)

Therefore, Our goal is to find the smallest non-product
Smolyak quadrature grid that can integrate the restricted set
of monomials

ql11 · · · q
l12
12 , with 0 ≤ l1 + · · ·+ l12 ≤ 2b + p.

p is an appropriate maximum degree for a Taylor expansion of the
potential.
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Non-product Smolyak quadrature grids are built by

A) Selecting sequences of 1D quadrature rules Q i
c with increasing

maximum accuracies di , i = 1, · · · ,K for every coordinate
c = 1, · · · ,D

{Q1
c ,Q

2
c ,Q

3
c · · · ,QK

c },with cd1 ≤c d2 ≤c d3 · · · ≤c dK .

Q1
c exactly integrates all the monomials x lc , l = 0, · · · ,c d1,

Q2
c exactly integrates all the monomials x lc , l = 0, · · · ,c d2,

Q3
c exactly integrates all the monomials x lc , l = 0, · · · ,c d3,
.

.

.

QK
c exactly integrates all the monomials x lc , l = 0, · · · ,c dK .
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B) Combining product quadrature grids with different maximum
accuracies cdi for every 1D coordinate

S(D,H) =
∑

D≤i1+···+iD≤H
Ci1,··· ,iDQ

i1
1 ⊗ · · · ⊗ Q iD

D .
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Properties of the Smolyak algorithm:

1) If one of the product quadrature grids Q i1
1 ⊗ · · · ⊗ Q iD

D within

S(D,H) exactly integrates a given monomial x l11 · · · x
lD
D the

non-product Smolyak quadrature grid S(D,H) can exactly
integrate that monomial =⇒

with D ≤ i1 + · · ·+ iD ≤ H and cdi ≥ 2i − 1 the Smolyak
quadrature grid integrates exactly all the monomials

x l11 · · · x
lD
D , with 0 ≤ l1 + · · · lD ≤ 2K − 1,

K = H − D + 1.
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2) If the points of the quadrature rules are nested
Q1(x) ⊂ Q2(x) ⊂ · · · ⊂ QK−1(x) ⊂ QK (x) the Smolyak
quadrature grid is the result of pruning a product quadrature grid

S(D,H)w(x1, · · · , xD)F (x1, x2, · · · xD)

=

N1∑
k1

Nmax
2 (k1)∑
k2

· · ·
Nmax
D (k1,k2,··· ,kD−1)∑

kD

wS(k1, k2, · · · , kD)F (x1, x2, · · · xD).

This property is very important: non-product Smolyak grids made
from nested quadratures have structure.
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The following sequence of nested Hermite quadrature rules for
C2H4 was used

i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, · · ·
Ni = 1, 3, 3, 7, 9, 9, 9, 9, 17, 19, 19, 19, 31, 33, 41, 41, · · ·
di = 1, 5, 5, 7, 15, 15, 15, 15, 17, 29, 29, 29, 31, 33, 61, 61, · · · .

Therefore, as cdi ≥ 2i − 1

2K − 1 ≥ 2b + p,

we exactly integrate all the necessary monomials in the integrands
(with 0 ≤ l1 + · · ·+ l12 ≤ 2p + p) in addition to monomials with
0 ≤ l1 + · · ·+ l12 > 2b + p.
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With b = 11 and p = 4, Hmin = 25 and the non-product Smolyak
grid has 1.5× 108 points.

The smallest product Gauss grid that exactly integrates the same
set of necessary monomials (with 0 ≤ l1 + · · ·+ l12 ≤ 2b + p = 26)
has 5.7× 1013 points.
This means a reduction of 5 orders of magnitude: The
variational calculation of the vibrational levels of 12D systems is
feasible using non-product Smolyak quadrature grids and pruned
product basis sets.
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IV. ADVANTAGES OF NON-PRODUCT SMOLYAK
QUADRATURE GRIDS
A) Matrix-vector products v2 = Hv1 with pruned product basis sets
can be calculated sequentially as

v2(n′1, · · · , n′12) =
∑
k12

φn′1(qk1) · · ·
∑
k1

φn′12(qk12)w(k1, · · · , k12)

×V (qk1 , · · · , qk12)
∑
n1

φn1(qk1) · · ·
∑
n12

φn12(qk12)v1(n1, · · · , n12),

since non-product Smolyak quadrature grids made from nested
quadratures have structure. The number of operations scales with
D as ∼ MD+1 (M is the maximum number of operations in 1D).
This scheme can be also applied to the kinetic operator.
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B) We integrate the complete operator (potential or kinetic) and
not an approximation up to 2, 3, 4, 5, · · · body terms as
MULTIMODE.
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V. RESULTS
Results were calculated using the exact Watson Hamiltonian. The
pruned basis set was restricted to n1 + · · ·+ n12 ≤ 11 and H = 25.
The total number of pruned product basis functions was 1.4× 106.
Vibrational energies up to 4100 cm−1 were converged to less than
0.5 cm−1.

assignation Eb=11 Exp

ν10 821.74 825.93
ν8 926.81 939.86
ν7 947.22 948.9
ν4 1025.93 1025.69
ν6 1223.76 1222
ν3 1341.37 1343.54
ν12 1440.20 1442.47
ν2 1623.53 1625.4

2ν10 1655.51 1662
ν8 + ν10 1751.09 1767
ν7 + ν10 1775.36 1781
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assignation Eb=11 Exp

ν4 + ν10 1849.44 1854
2ν8 1855.72 1881

ν7 + ν8 1869.38 1889
2ν7 1895.21 1900

ν4 + ν8 1949.81 1958
ν4 + ν7 1964.46 1965
ν6 + ν10 2040.33 2048

2ν4 2049.11 2046
ν3 + ν10 2165.84 2173

3ν10 2494.40 2504
2ν3 2680.89 2685
3ν7 2843.78 2854
2ν12 2872.07 2877
ν2 + ν3 2957.97 2962

ν6 + ν8 + ν10 2977.94 2993.29
ν11 2983.94 2988.64
ν1 3019.66 3022.03
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assignation Eb=11 Exp

ν2 + ν12 3072.84 3079
ν3 + ν8 + ν10 3091.06 3109.32

ν5 3076.72 3083.36
2ν10 + ν12 3094.98 3104.33

ν9 3098.04 3104.89
2ν2 3238.35 3239

ν2 + 2ν10 3267.96 3276.2
ν7 + ν8 + ν12 3297.05 3327.3
ν2 + 2ν8 3462.02 2496.9

ν6 + ν10 + ν12 3473.49 3480.1
ν2 + 2ν7 3504.29 3514.4
ν2 + 2ν4 3665.61 3658.7
ν8 + 2ν12 3790.03 3810.97
ν10 + ν11 3800.77 3809
ν1 + ν10 3833.60 3842

ν6 + ν8 + 2ν10 3806.95 3825.05
ν2 + ν10 + ν12 3885.22 3892.46
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assignation Eb=11 Exp

ν8 + ν11 3903.97 3921
ν9 + ν10 3918.63 3928

ν3 + ν8 + 2ν10 3926.66 3946.82
ν7 + ν11 3924.07 3931

ν6 + ν7 + ν8 + ν10 3929.23 3948.59
3ν10 + ν12 3929.63 3944.31
ν1 + ν8 3939.54 3954
ν7 + ν9 4039.00 4047
ν2 + 2ν6 4042.32 4049.50

ν7 + 2ν10 + ν12 4043.17 4057.72
4ν4 4087.53 4076
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V. CONCLUSION AND FUTURE WORK

The calculation of the vibrational spectra of molecules with six or
more atoms using rigorously the variational method can be feasible
using the pruned product basis sets+non-product Smolyak
quadrature grids made from nested quadratures+iterative
eigensolvers scheme.

An alternative to this work would be to use the Smolyak algorithm
to interpolate the vibrational wavefunctions instead of integrating
the basis functions. In this case we should abandon the variational
method and use the different finite-differences method because we
no longer have integrals over basis functions.
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APPENDIX Considering the pruning condition

Φi =
∑

0≤n1+···+n12≤b
C i
n1,··· ,n12φn1 · · ·φn12 + err(b) =

∑
0≤l1+···+l12≤b

T i
l1,··· ,l12q

l1
1 · · · q

l12
12 + err(b),

and the expansion of the potential as

V =
∑

0≤l1+···+l12≤p
D i
l1,··· ,l12q

l1
1 · · · q

l12
12 + err(p).
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