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Spectroscopists often use a zeroth-order harmonic model and
perturbation theory to analyse ro-vibrational spectra.

However, for

high-lying states

molecules with

large amplitude motions
important anharmonicity, Coriolis, or centrifugal coupling

one, instead, needs numerically accurate solutions to the
Schroedinger equation

Ĥψn = Enψn

What is Ĥ ?

How does one solve the Schroedinger equation ?
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Ĥ = K̂ + V̂

To compute a spectrum one must choose coordinates that describe
the shape and orientation of the molecule and find the associated
kinetic energy operator (KEO).

the chain rule
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To obtain the potential

solve the electronic Schroedinger equation for many different
shapes

fit a function to these points
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How does one solve the Schroedinger equation ?

represent wavefunctions with basis functions

ψn(r,θ) =
∑

k

cn
k fk(r,θ)

compute eigenvalues and eigenvectors of the Hamiltonian
matrix
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Fundamental Recipe

K̂ + V̂ → Ĥ
basis−−−→ H→ eigenvalues,

eigenvectors
→ energies,

wavefunctions

→ Spectrum

NB : I am not fitting with an effective Hamiltonian ;
I am not using perturbation theory
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Objective

Compute a ro-vibrational spectrum

without approximating the potential

the potential is not re-represented as a sum-of-products
the potential is not re-represented as a sum of terms with one,
two, etc coordinates

without approximating the kinetic energy operator (KEO)

terms in the KEO are not neglected
coordinate-dependent functions in the KEO are not expanded

We wish to compute many levels (not just fundamental bands)
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We want to be able to deal with large amplitude motion

Normal coordinates are not appropriate for molecules with large
amplitude motion

For large amplitude motion it is best to :

choose N − 1 vectors to describe the shape and orientation

use the lengths of the vectors and the associated spherical
polar angles as vibrational coordinates
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Consider first the J = 0 problem

The general KEO is

T = Ts + Tb

with

Ts = −
N−2∑
k=0

1

2µk

∂2

∂r2k

and

Tb = Tb,diag + Tb,off .
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Tb,diag = [B0(r0) + B1(r1)]

[
− 1

sin θ1

∂

∂θ1
sin θ1

∂

∂θ1
+

1

sin2 θ1
L2z

]

+
N−2∑
k=2

[B0(r0) + Bk(rk)] l2k

+B0(r0)

2L2z + 2
N−2∑

k 6=k′=2

lkz lk′z


Tb,off = B0(r0)

(L+)a−1 + (L−)a+1 +
N−2∑

k 6=k′=2

(lk+lk′− + lk−lk′+)


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A convenient basis is

fk1,l1,k2,l2,m2··· = χk1(r1)Θm1
l1

(θ1)χk2(r2)Θm2
l2

(θ2)Φm2(φ2) · · ·

with m1 = −m2 −m3 − · · ·

In this basis

there are simple equations for all KEO matrix elements

singularities in the KEO cause no trouble.
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Between 10 and 100 1-d functions required for each coordinate.

⇒ > 103N−6 multi-d basis functions required.

The Hamiltonian matrix is

too large to calculate

too large to store in memory

too large to diagonalise
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Diagonalization can be avoided by using iterative methods

A spectrum can be computed from time-independent methods
that require only evaluating matrix-vector products

Matrix-vector products can be done without storing the
matrix

Only a few vectors are stored

14 / 56



Lanczos Algorithm

H =



· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

→

· · 0 0
· · · 0
0 · · ·
0 0 · ·

 = T

Among the eigenvalues of T are eigenvalues of H

Eigenvectors of H are obtained from those of T
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Key advantages of an iterative approach

Obviates the need to store a matrix representation of the
Hamiltonian

Even better, Hamiltonian matrix elements are never calculated

Using such methods one does not need to approximate the
potential because multi-dimensional quadrature does not
significantly increase the cost
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Limitations of a product basis

Even for J = 0 methane, a product basis calculation is large

|α0 α1 α2 α3〉|l1 l2m2 l3m3 〉

It would be necessary to use ∼ 209 basis functions (4000 GB for
one vector) !
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Contracted basis functions

It is better to use products of eigenfunctions of reduced-dimension
Hamiltonians.

E.g.,

H = Hbend + Hstretch + ∆coupling

Hbend b(θθθ) = Eb b(θθθ)

Hstretch s(rrr) = Es s(rrr)

s(rrr)b(θθθ) is a contracted basis function.

A small number of the s(rrr)b(θθθ) are retained.
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How do we incorporate coupling between bends and
stretches ?

To evaluate matrix-vector products for the matrix

〈s ′(rrr)b′(θθθ)|∆coupling |b(θθθ)s(rrr)〉

we exploit the fact that ∆V is diagonal in the DVR used to solve
the stretch problem :

〈s ′(rrr)b′(θθθ)|∆V |b(θθθ)s(rrr)〉 =
∑
α

Dt
s′αF

α
b′bDαs
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〈s ′(rrr)b′(θθθ)|∆V |b(θθθ)s(rrr)〉 is too big to store

s′

s

s′′

s s′ s′′

= 〈b′s′|∆V |bs〉
V s′s′
b′b

V ss
b′b

V s′′s′′
b′b

V s′s
b′b

V s′′s
b′b

V ss′
b′b V ss′′

b′b

V s′s′′
b′b

V s′′s′
b′b
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F αb′b is not too big to store

0

0

00

0

0

0

0

0 0

0

0α′

α

α′′

α

F α′′
b′b

F α′
b′b

α′ α′′

= 〈b′α′|∆V |bα〉

F α
b′b
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Basis lmax = mmax nbend E cut
b nb ni nstretch E cut

s ns nfinal

Basis I 25 3.26M 8090 280 10 5049 20000 260 72800
∗ 1 M = 1 million. ni is the number of PODVR basis functions for ri with i = 0, 1, 2, 3.

33× 109 → 72× 103

reduction of six orders of magnitude
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J > 0

If the molecule-fixed axes are attached to two vectors the KEO is
still compact :

T = Ts + Tbr + Tcor

with
Tbr = Tbr,diag + Tbr,off .

23 / 56



Tbr,diag = [B0(r0) + B1(r1)]

[
− 1

sin θ1

∂

∂θ1
sin θ1

∂

∂θ1
+

1

sin2 θ1
(Jz − Lz )2

]

+
N−2∑
k=2

[B0(r0) + Bk (rk )] l2k

+B0(r0)

J2 − 2(Jz − Lz )2 − 2Jz (Lz ) + 2
N−2∑

k 6=k′=2

lkz lk′z


Tbr,off = B0(r0)

(L+)a−1 + (L−)a+1 +
N−2∑

k 6=k′=2

(lk+lk′− + lk−lk′+)


Tcor = −B0(r0)

[
J−(a+1 + L+) + J+(a−1 + L−)

]
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J > 0 basis

fk1,l1,k2,l2,m2··· ,J,K ,M =χk1(r1)Θm1
l1

(θ1)χk2(r2)Θm2
l2

(θ2)Φm2(φ2) · · ·
× DJ∗

MK (α, β, γ)

with m1 = K −m2 −m3 − · · ·

A factor of 2J + 1 larger than the already huge product vibrational
basis !
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With m1 = K −m2 −m3 − · · ·

all matrix elements of the KEO are known in closed form

singularities in the KEO cause no trouble
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An obvious strategy is to use a basis of products of DJ∗
MK

and vibrational eigenfunctions

The Hamiltonian may be written

H = Hvib + Hrv .

Eigenfunctions of Hvib, |v〉, are, in turn, computed in a s(rrr)b(θθθ)
basis.

The b(θθθ) are computed in a basis of products of angular functions.
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Two problems

In the basis in which there are simple equations for the matrix
elements and singularities are sure not to cause trouble, the
vibrational basis functions depend on K and hence b(θθθ) must
be computed for each K

In the two-vector embedded KEO, coupling between rotation
and vibration can be so large that the DJ∗

MK |v〉 basis is too big
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Neither of these problems exists if one uses the Watson KEO

in normal coordinates (Eckart frame),

but we wish to be able to deal with large amplitude motion.
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A K -independent bend basis

We use m1 = −m2 −m3 − · · ·

rather than m1 = K −m2 −m3 − · · ·
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Some of the matrix elements required to compute |v〉 in
this basis are infinite

They involve the factor

〈Θm2
l1
| 1

sin2 θ1
|Θm2

l ′1
〉 ,

which is infinite if m2 = 0,

θ1 is the angle between ~r0 and ~r1.

As long as all wavefunctions are tiny near θ1 = 0, π
the infinite integrals cause no trouble
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Test the new basis

First, test to see if it can be used to compute, without contraction,
ro-vibrational states.
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Ro-vibrational levels of H2O2

TABLE I: Selected rotational levels of H2O2 (in cm−1).

Basis : lx = mx = 27, nr0 = 8, nr1 = 4, nr2 = 4.

old basis new basis

J=1,even

A+ 10.92037 10.92037

B+ 12.74179 12.74179

B+ 21.90777 21.90777

J=10,even

A+ 93.98948 93.98948

A+ 102.22920 102.22920

A+ 130.82938 130.82938

A+ 176.70749 176.70749

B+ 115.14294 115.14294

B+ 141.80373 141.80373

B+ 187.67813 187.67813

TABLE I: Basis size and spectral range (in cm−1).

old basis new basis

J=1,even

Nbasis 2.757 M 2.761 M

∆E 81 K 86 K

J=10,even

Nbasis 18.54 M 19.73 M

∆E 82 K 489 K

The basis size only increases
slightly

The spectral range is larger,
increases with increasing J
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Results with the two bases agree to 0.00001 cm−1.

The new basis works well because wavefunctions are tiny
when H-O-O is nearly linear.
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Another test

Fix the stretch coordinates and solve a bend-rotation problem for
CH4.
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TABLE I: J = 5 bend-rotation levels of the ground state of methane computed

with the shared-K basis and the non-shared-K basis (in cm−1).

shared-K non-shared-K

Td L = 25 L = 29 L = 25 L = 29

F1 160.56526 (A2) 160.56516 (A2) 160.56541 (A) 160.56516 (A)

160.56527 (E ) 160.56516 (E ) 160.56532 (B) 160.56516 (B)

160.56547 (B) 160.56516 (B)

F2 160.57101 (A1) 160.57090 (A1) 160.57110 (A) 160.57090 (A)

160.57101 (E ) 160.57090 (E ) 160.57120 (A) 160.57090 (A)

160.57114 (B) 160.57090 (B)

E 160.58580 (E ) 160.58569 (E ) 160.58589 (A) 160.58569 (A)

160.58601 (B) 160.58569 (B)

F1 160.58854 (A2) 160.58844 (A2) 160.58885 (A) 160.58844 (A)

160.58857 (E ) 160.58844 (E ) 160.58857 (B) 160.58844 (B)

160.58876 (B) 160.58844 (B)

Results with the two bases agree to 0.00001 cm−1.
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TABLE I: Selected J = 5 bend-rotation levels (lowest F2 level of the

Tetradecad) of methane computed with the shared-K basis and non-shared-K

basis (in cm−1).

shared-K non-shared-K

L = 25 L = 29 L = 31 L = 25 L = 29 L = 31

5409.99210 (A1) 5409.81211 (A1) 5409.81114 (A1) 5410.02992 (A) 5409.81246 (A) 5409.81117 (A)

5409.98310 (E ) 5409.81200 (E ) 5409.81114 (E ) 5410.27410 (A) 5409.81577 (A) 5409.81143 (A)

5409.96826 (B) 5409.81190 (B) 5409.81114 (B)

Results with the two bases agree to 0.004 cm−1 for L=29

Results with the two bases agree to 0.0003 cm−1 for L=31
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The contracted basis built from the non-shared K basis
works well

TABLE I: Errors (cm−1) of J = 1 bend-rotation levels in the contracted basis

with respect to levels computed with the full primitive L = 29 non-shared K

basis

Npoly 1 2 3 4 < 5 > 6 > 6

nb 6 21 56 126 231 280 437

Ecut 1580 3150 4730 6310 7440 8090 9020

(v1v2v3v4Γv)Γvr Cs non-shared-K

(0000A1)F1 A 0.2353 0.0044 0.0002 0.0000 0.0000 0.0000 0.0000 10.7083

A 0.6343 0.0298 0.0024 0.0003 0.0000 0.0000 0.0000 10.7083

B 0.7070 0.0317 0.0025 0.0003 0.0000 0.0000 0.0000 10.7083

(0100E)F2 A 17.8425 0.3453 0.0166 0.0013 0.0003 0.0002 0.0000 1583.8499

B 19.4902 0.4063 0.0292 0.0024 0.0004 0.0003 0.0001 1583.8499

B 20.2336 0.7049 0.0396 0.0041 0.0009 0.0005 0.0001 1583.8499

(0100E)F1 A 27.0161 0.7630 0.0249 0.0016 0.0002 0.0001 0.0000 1583.9879

B 29.4793 0.9008 0.0519 0.0051 0.0010 0.0006 0.0001 1583.9879

B 28.5257 0.9534 0.0229 0.0016 0.0003 0.0001 0.0000 1583.9879
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The contracted basis is orders of magnitude smaller

Vibrational basis size comparison :

6.7× 106 >> nb
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Ro-vibrational coupling is too strong

Although the contracted basis is much smaller,

the size of the contracted bend-stretch basis

required for J > 5 is too big.
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For many molecules, ro-vibrational coupling is smaller in an Eckart
frame.

It is straightforward to use an Eckart frame with normal
coordinates.

How does one use an Eckart frame with polyspherical coordinates ?

The best of both worlds : vibrational coordinates
that enable one to deal with large-amplitude
motion AND an Eckart frame that minimizes
ro-vibrational coupling

41 / 56



For a 3-atom molecule it is possible to derive the Eckart
frame - Radau coordinate KEO

H. Wei and T. Carrington, Chem. Phys. Lett. 287, 289-300 (1998)

T = T vib + T rot + T cor,

where

T vib = − 1

2m1

∂2

∂R2
1

− 1

2m2

∂2

∂R2
2

−
(

1

2m1R2
1

+
1

2m2R2
2

)
∂

∂c
(1− c2)

∂

∂c
,

T rot =
1

2
[GxxJ

2
x +GyyJ

2
y +GzzJ

2
z +Gxy (JxJy +JyJx )],

T cor = − i

2

∑
v=R1,R2,c

[
Gvz

∂

∂v
+

∂

∂v
Gvz

]
Jz ,
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GR1z = −ΛερR2 sin(θ − θe),

GR2z = ΛρR1 sin(θ − θe),

Gcz = Λ sin θ[1−ερ2−ρ(R1/R2−εR2/R1) cos(θ−θe)],

Gxx = Λ(1− c2)−1[S2
1 + S2

2/ε],

Gyy = Λ(1− c2)−1[C 2
1 + C 2

2 /ε],

Gxy = Λ(1− c2)−1[−S1C1 + S2C2/ε],

Gzz = Λ[1 + ερ2],

where

S1 = sin(θ−ηe) + ερ(R2/R1) sin(θe−ηe),

C1 = cos(θ−ηe) + ερ(R2/R1) cos(θe−ηe),

S2 = ερ sin(θ−θe +ηe)+(R1/R2) sin ηe ,

C2 = ερ cos(θ−θe +ηe)+(R1/R2) cos ηe ,

1/Λ = m1[R2
1 + (ερR2)2 + 2ερR1R2 cos(θ − θe)],
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difficult to use

almost impossible to derive for a larger molecule
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For any molecule-fixed axis system, the classical kinetic energy is,

Kclass =
1

2

(
J p

)(Grr Grv

G t
rv Gvv

)(
J
p

)

We want to use

a vibrational KEO in polyspherical coordinates

the volume element sin θ1dθ1 sin θ2dθ2 · · · dφ2 · · · dr1 · · ·
a standard Θm1

l1
(θ1)Θm2

l2
(θ2)Φm2(φ2) · · · bend basis.

This enables us to deal with large amplitude vibra-
tional motion
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The proper KEO is

KQM = KRadau
vib +

1

2
JtGrrJ + Kvr + K †vr

with

Kvr =
1

2

∑
kα

pk (Grv )kα Jα

where

pk =
1

i

∂

∂r
when k = r

pk =
1

i

∂

∂dφ
when k = φ

pk =
1

i

(
∂

∂θ
+

1

2
cot θ

)
when k = θ
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How does one compute Grv and Grr in an Eckart frame ?

We do not have expressions for the elements.

We can calculate the value of Grv and Grr at each
polyspherical point.

For I−1 this is done by finding the orientation of the Eckart
frame and using the Cartesian coordinates of the nuclei.

The orientation of the Eckart frame is found from a singular
value decomposition (SVD)
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For Grv we use ideas of (Rolf) Meyer, Pickett, McCoy and Sibert,
Lauvergnat, etc

Grv = CGvv

C = µX

Xα,k =
N∑

i=1

miεαβγxβi
∂xγi

∂Qk

X is calculated from elements of the inverse of B
where

Bk,αi =
∂Qk

∂xαi

whose elements are computed from finite difference derivatives
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For H2O numerical and analytic G matrix elements agree
well

At r1 = 1.7 bohr, r2 = 1.5 bohr, θ = 100◦

gv(1,1) 4× 10−14

gv(1,2) < 10−14

gv(1,3) < 10−14

gv(3,3) 2× 10−13

grv(2,1) < 10−14

grv(2,2) 1× 10−14

grv(2,3) < 10−14

grr(1,1) < 10−14

grr(3,3) 1× 10−14

grr(1,3) < 10−14

grr(2,2) < 10−14
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One expects better convergence when using an Eckart
frame

With the z axis along a Radau vector the Coriolis coupling is
proportional to B0(r0) (for H2O 19 cm−1)

Tcor = B0(r0)
[
−2pθ1Jy

]

In an Eckart frame the Coriolis coupling is zero at equilibrium.
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J = 20 results for H2O demonstrate advantage of Eckart

Large basis Small basis

Assign SKF DVR SKF DVR PS1997

Ka Kc Bond-z Eckart Bond-z Eckart

G.S. lx = 31 nθ = 32 lx = 20 nθ = 21

0 20 4048.353 0.001 2.590 0.001 0.00

1 20 4048.353 0.001 7.571 0.001 0.00

2 18 4738.706 0.000 3.651 0.000 -0.01

3 18 4738.718 0.000 8.283 0.000 -0.01

4 16 5292.163 0.000 6.389 0.001 0.00

5 16 5294.099 0.000 9.865 0.000 -0.01

5611.387 0.001 25.048 0.001

5611.388 0.000 58.993 0.001

6 14 5680.816 0.000 4.634 0.000 -0.01

7 14 5739.274 0.001 14.933 0.001 0.00

8 12 5966.857 0.000 9.839 0.000 0.00

9 12 6167.755 0.000 15.985 0.000 -0.01

6379.385 0.001 31.418 0.001

6379.432 0.000 55.576 0.000

10 10 6407.484 0.000 36.524 0.000 0.01

11 10 6664.180 0.001 38.896 0.001 0.00

12 8 6935.460 0.000 33.623 0.000 0.00
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When used with a contracted basis the Eckart frame is
much better

Ka Kc Converged Eckart Bond-z Eckart Bond-z

G.S. lx = 31 nvib = 23 nvib = 23 nvib = 134 nvib = 134

Ecut=10K cm−1 Ecut=10K cm−1 Ecut=20K cm−1 Ecut=20K cm−1

0 20 4048.353 0.04 94.8 0.000 0.84

1 20 4048.353 0.04 94.8 0.000 0.84

2 18 4738.706 0.04 52.8 0.000 0.28

3 18 4738.718 0.04 52.8 0.000 0.28

4 16 5292.163 0.05 33.0 0.000 -0.12

5 16 5294.099 0.05 33.7 0.000 -0.08

5611.387 0.45 85.3 0.001 4.60

5611.388 0.45 152.0 0.000 4.61

6 14 5680.816 0.05 305.6 0.000 -0.88

7 14 5739.274 0.04 374.1 0.000 -0.25

8 12 5966.857 0.04 146.6 -0.001 -0.36

9 12 6167.755 0.04 23.1 0.000 0.19

6379.385 0.46 50.7 0.000 2.22

6379.432 0.46 305.3 0.000 2.22

10 10 6407.484 0.04 279.7 0.000 0.49

11 10 6664.180 0.04 23.4 0.000 0.79

12 8 6935.460 0.05 19.7 0.000 1.05
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Conclusion

Two problems impede the calculation of a ro-vibrational spectrum
using a KEO in polyspherical coordinates and a contracted basis.

In the standard basis vibrational eigenfunctions must be
computed for each K . For molecules for which vectors can be
defined so that θ1 = 0, π is inaccessible, this problem is solved
by taking m1 = −m2 −m3 − · · ·

With the standard choice of molecule-fixed axes the
ro-vibrational coupling is large. This problem can be solved by
using Eckart axes and computing G matrix elements
numerically.

Results for methane soon !
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the Réseau québécois de calcul de haute performance,

the Canada Research Chairs programme



Because the basis is huge it would be far too costly to form the
potential matrix and explicitly multiply the matrix with vectors.

To illustrate the computation of a matrix-vector product consider

wl ′m′ =
∑
lm

Vl ′m′,lm xlm

replace

Vl ′m′,lm =

∫
dθ

∫
dφYl ′m′(θ, φ)V (θ, φ)Ylm(θ, φ)

≈
∑
βγ

Tm′
l ′β Qm′γ V (θβ, φγ) Qmγ Tm

lβ
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wl ′m′ =
∑
lm

∑
βγ

Tm′
l ′β Qm′γ V (θβ, φγ) Qmγ Tm

lβ xlm

wl ′m′ =
∑
β

Tm′
l ′β

∑
γ

Qm′γ V (θβ, φγ)
∑

m

Qmγ

∑
l

Tm
lβ xlm

The largest vector is labelled by the grid indices.
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