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The past 82 years has seen a considerable amount of work on NaH.

Table 1: Summary of experimental data used in the present work.

Isotop. Type Unc.(cm−1) v(A 1Σ+) v(X 1Σ+) #data source

NaH Ultraviolet 0.3 3-20 0-3 1884 Hori (1930, 1931)

Ultraviolet 0.3 4-13 0-1 524 Olsson (1935)

Ultraviolet 0.1 1-20 0-8 27 Pankhurst (1949)

Ultraviolet 0.1 0-1 6-8 261 Orth et al. (1980)

Ultraviolet 0.03 8-15 0 298 Lochbrunner et al. (1996)

Ultraviolet 0.15 13-25 0-1 27 Rafi et al. (1993)

Ultraviolet 0.3 0-10, 12 0-1 137 Stwalley, Zemke & Yang (1991)

Ultraviolet 0.001− 0.022 2-8 6-9 280 Pesl, Lutz & Bergmann (2000)

Ultraviolet 1.033 7-8, 10-12 0 41 Huang (2010)

Ultraviolet 1.033 7-8, 10-11 9-21 286 Huang (2010)

Microwave 0.1 — 3-8 146 from Pankhurst (1949)

Microwave 0.1 1-7 — 183 from Pankhurst (1949)

Microwave 0.000007 — 0-3 4 Sastry, Herbst & De Lucia (1981)

Microwave 0.000003− 0.000015 — 0-3 21 Leopold et al. (1987)

Infrared 0.001 — 0-2 25 Magg & Jones (1988)

Infrared 0.001− 0.002 — 0-3 58 Maki &Olson (1989)

Infrared 1.033 — 9-21 286 from Huang (2010)

NaD Ultraviolet 0.2 7-17 0-1 604 Olsson (1935)

Microwave 0.000007 — 0-3 5 Sastry, Herbst & De Lucia (1981)

Overall 0-1,3-20 0-3,6-21 4631



However, prior to 2010, the data range for theX 1Σ+ state was only v = 0−9 ,

spanning only 60% of its potential well, and the v = 0 − 25 range for the A 1Σ+

state spanned only 86% of its well. This left the ground-state dissociation energy a

very uncertain property !
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However, their estimate of the dissociation energy

was based on classical quadratic extrapolations

of the vibrational spacings and vibrational energy

that neglected the fact that Near-Dissociation

theory shows that these plots should show

clear positive curvature at the intercept !



Up to this point, all analyses of NaH and NaD data had been based on traditional

Dunham analyses, one isotopologue at a time, and neglected the fact that since they

were hydrides, quantum mechanical deviations from semiclassical mass scaling

and Born-Oppenheimer breakdown (BOB) effects are expected to be relatively

large !

In contrast, the present paper reports a fully quantum mechanical

Direct Potential Fit (DPF) analysis that takes full account of the

different levels of precision of the various data set and accounts for

all available data (on average) within their estimated uncertainties.

But how is this done ?



‘Direct Potential Fits’
{For 3-D Van der Waals molecules since 1974, and diatomics since ∼ 1990 }

• Simulate level energies as eigenvalues of some parametrized

analytic potential energy function V (r; {pj})

• Partial derivatives of observables w.r.t. parameters pj required

for fitting are generated readily using the Hellmann-Feynmann

theorem: ∂E(v, J)

∂pj
=

〈
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〉

• Compare predicted transition energies with experiment, and

optimize potential parameters via an iterative least-squares fit



‘Direct Potential Fits’
{For 3-D Van der Waals molecules since 1974, and diatomics since ∼ 1990 }

• Simulate level energies as eigenvalues of some parametrized

analytic potential energy function V (r; {pj})

• Partial derivatives of observables w.r.t. parameters pj required

for fitting are generated readily using the Hellmann-Feynmann

theorem: ∂E(v, J)

∂pj
=

〈

ψv,J

∣

∣

∣

∣

∂ V (r; {pj})

∂pj

∣

∣

∣

∣

ψv,J

〉

• Compare predicted transition energies with experiment, and

optimize potential parameters via an iterative least-squares fit

Advantages

• final result is a global analytic potential energy function

• allows realistic predictions in ‘extrapolation’ region outside

the data range, and of non-spectroscopic properties

• yields full quantum mechanical accuracy

• readily accounts for Born-Oppenheimer breakdown (BOB),

Λ-doubling, and/or 2Σ splittings, in terms of radial functions



For the ground X 1Σ+ state of NaH, theory has given us good values of the

leading long-range dispersion coefficients C6, C8 and C10, so it is appropriate to use

a potential function form that incorporates the theoretically predicted inverse-power

long-range tail so we use:

The Morse/Long-Range (MLR) Potential.

If we define uLR(r) =
Cm1

rm1
+

Cm2

rm2
+ . . . we can write

VMLR(r) = De

{

1−
uLR(r)

uLR(re)
e−β(r) y

eq
p (r)

}2

r ≫ re
−−−→ De −

[

2De e
−β∞

uLR(re)

]

uLR(r) = De −
Cm1

rm1
−
Cm2

rm2
− . . .

in which β(r) = β∞ yrefp (r) + [1− yrefp (r)]

Nβ
∑

i=0

βi y
ref
q (r)i

and β∞ = ln{2De/uLR(re)}, where yrefp (r) ≡
rq − rref

q

rq + rrefq

The physical parameters De and re and the exponent expansion parameters {βi}

are optimized using a standard automated least-squares technique.
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expansion centre rref , the power q defining the expansion variable, and the

exponent polynomial order Nβ are determined by manual (trial-end-error) fits.
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Now . . . what about

finding the best model, and

the best estimate of De

and of its uncertainty ?

the best model has

dd at its minimum

for a minimum of Nβ, but

the uncertainty in its De

value is small relative to the

variation between models.



Thus . . . we need a scheme for averaging to get a best estimate of De and of its

overall uncertainty, while taking account of model-dependence. We use the scheme

introduced in J. Chem.Phys.101, 10217 (1994).

If a fit to a particular model, model k, with an overall dimensionless standard

deviation of ddk yields the value Pk and uncertainty u(Pk) for parameter P ,

then the weight given to this Pk value is

wP
k =

1

[ u(Pk) ddk ]2

The recommended value of this parameter would then be based on an average over

the values from all models whose ddk values lay within, say, 1% or 2% of the

ddk minimum

P =

∑

k(w
P
k Pk)

∑

k w
P
k

and the associated uncertainty in this estimate is

u(P ) =

{

[∑

k w
P
k (Pk − P )2
∑

k w
P
k

]

+

[∑

k w
P
k u(Pk)

∑

k w
P
k

]2
}1/2
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Now let us apply this

“averaging-over-models”

method to our fitted De

values for models whose

dd values lie within

2% of the minimum!
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“averaging-over-models”

method to our fitted De

values for models whose

dd values lie within

2% of the minimum,

or 1% of the minimum!

The close similarity of

these two averages

gives us confidence in

their predictions !



Experimental estimates of the NaH well depth energy

source De / cm−1 method

present work (2013) 15 799± 4 direct fit to an MLR

potential function

Huang et al. (2010) 15 815± 5 polynomial extrapolation

from v′′ = 21

Stwalley et al. (1991) 15 900± 100 ab initio tail + binding energy

of v′′ = 19

Nedelec and Grioud (1983) 15 785± 20 Polynomial Birge-Sponer

extrapolation from v = 19

Grioud and Nedelec (1980) 16 300± 500 Polynomial Birge-Sponer

extrapolation from v = 16

Pankhurst (1949) 17 410± ?? Morse extrapolation from v′′ = 8

Hori (1931) 18 100± ?? polynomial extrapolation

from v′′ = 20



Now that we have an optimum model for the X 1Σ+ state, . . .

what about the A 1Σ+ state ?

This state dissociates to Na(3p)+H(1s) , and there are no reported theoretical

dispersion coefficients for the long-range interaction of these atoms, so we cannot

model this state with an MLR function. Instead, let us use the

Extended Morse Oscillator (EMO) Potential.

VEMO(r) = De

{

1− e−β(r) (r−re)
}2

in which β(r) =

Nβ
∑

i=0

βi y
ref
q (r)i where yrefq (r) = rq−rref

q

rq+rref
q

Once again, the physical parameters De and re and the exponent expansion

parameters {βi} may be optimized using our standard automated least-squares

technique.
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Once again, the physical parameters De and re and the exponent expansion

parameters {βi} may be optimized using our standard automated least-squares

technique,

while the expansion centre rref and the power q defining the expansion

variable, and the exponent polynomial order Nβ must be determined by manual

(trial-and-error) fits.



Once again, we perform fits for a variety of Nq models, plot dd vs. rref and search

for a minimum.
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Our optimum model is the one for which: Nβ = 16 , q = 3 , and rref = 4.1 Å.

Now we can perform a global fit to all of the data, varying all parameters

simultaneously, and then perform “sequential rounding and refitting ”

to obtain an optimally compact set of parameter values.



X 1Σ+
g

A 1Σ+
u

model MLR(12) EMO(18)

De 15797.9 (4.9) 9353.167 (4)

re 1.8870239 (15) 3.107856 (5)

C6 [3.57502× 105] —

C8 [5.41796× 106] —

C10 [1.12920× 108] —

{p, q} = {6, 4} {q} = {3}

rref [3.00] [4.1]

β0 0.07318223 0.50113700

β1 −4.1817932 0.3566980

β2 −5.794976 −0.039330

β3 −6.28633 −0.15659

β4 −6.31251 0.30030

β5 −5.8552 1.5283

β6 −4.6227 8.3540

β7 −3.177 −18.233

β8 −4.406 −104.69

β9 −9.290 103.57

β10 −11.94 666.1

β11 −7.76 −12.4

β12 −2.00 −2037.

β13 — −1443.

β14 — 2070.

β15 — 3070.

β16 — 1100.

But what are these
potential functions like ?
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The ab initio calculations by

Aymar, Deiglmayr and Dulieu

[Can. J. Phys.87, 543 (2009)]

show that this is due to

an avoided crossing with

the C 1Σ+-state potential.

This confirms that our

exponential-cutoff EMO

potential needs an

improved form at large r.
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Conclusions
Our DPF analysis gives:

• an improved NaH

dissociation energy of

De = 15798.7(±4.3) cm−1

• an accurate MLR potential

energy function for

the X 1Σ+ state

• an EMO potential for

the A 1Σ+ state whose

abrupt cutoff at the

asymptote correctly

reflects the avoided-

crossing physics there.
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Conclusions
Our DPF analysis gives:

• an improved NaH

dissociation energy of

De = 15798.7(±4.3) cm−1

• an accurate MLR potential

energy function for

the X 1Σ+ state

• an EMO potential for

the A 1Σ+ state whose

abrupt cutoff at the

asymptote correctly

reflects the avoided-

crossing physics there.

• A DPF using an MLR

form does capture that

turnover properly !



Diatomic DPF analyses may be performed ‘routinely’ using

program DPotFit (‘Diatomic Potential Fits’ )

{ available with manual from http://leroy.uwaterloo.ca/programs/}

which performs DPF fits to spectroscopic data and can:

• simultaneously treat any combination of microwave, infrared, electronic,

fluorescence series, tunneling level widths, & photo-association data

∗ for one or multiple isotopologues

∗ for one or multiple electronic states

• take account of atomic-mass dependent Born-Oppenheimer breakdown

• take account of Λ-doubling of singlet states or 2Σ splittings

• use “sequential rounding and re-fitting ” to automatically yield fitted

parameters with a minimum number of significant digits and no loss of precision

in representing data

• use Watson’s “robust ” data weighting technique to damp the effect of “outlier”

observations which give anomalously large discrepancies with the model, and

might unreasonably mislead a fit.

• allow four types of potential forms: EMO, MLR, DELR, or polynomials.



In the beginning there was Hori . . .

Zeitschrift für Physik 62, 352-367 (1930):

Zeitschrift für Physik

71, 478-537 (1931):

who observed P/R

transitions for

for v′′(X) = 0− 3

and v′(A) = 0− 20

with J = 0− 35.

However, his data

uncertainties were

only ±0.3 cm−1.



. . . and then there was Olsson . . .

Zeitschrift für Physik 93, 206-219 (1935):

who observed P/R series of NaH for v′′(X) = 0, 1 and v′(A) = 4 − 13 with J up

to 23 at slightly higher precision of ∼ 0.2 cm−1, as well as

NaD data for v′′(X) = 0, 1 and v′(A) = 4− 17 with J up to 23.

His results showed that Hori’s v′(A) numbering for NaH had to be increased by 3



. . . then after the war there was Pankhurst (1949) . . .

Proceedings of the Physical Society A 62, 191-199, (1949):

whose NaH measurements for v′′(X) = 0− 8 and v′(A) = 1− 20 with J up to 31

had improved precision of ca. ±0.1 cm−1.

He reported his fitted band origins, as well as tables of combination differences

(which we treat as pure rotational data) for the X and A states.
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Proceedings of the Physical Society A 62, 191-199, (1949):

whose NaH measurements for v′′(X) = 0− 8 and v′(A) = 1− 20 with J up to 31

had improved precision of ca. ±0.1 cm−1.

He reported his fitted band origins, as well as combination differences (which we

treat as pure rotational data) for the X and A states.

However, he never presented the actual data, which were then lost.



. . . Finally, the ‘modern era’ began in 1980 with . . .

While still of relatively low precision (±0.3 cm−1) they finally extended

measurements for the A 1Σ+ state down to v′ = 0 .



. . . This was followed by a number of high resolution

microwave and infrared studies . . .



. . . which were followed by more electronic work . . .

Z. Phys. D 38, 35—40 (1996)

New Dunham coefficients of the A1R`-State of NaH and NaD

S. Lochbrunner1, M. Motzkus1, G. Pichler*, K. L. Kompa1, P. Hering1, 2

1Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
2 Institut für Lasermedizin, Universität Düsseldorf, D-40225 Düsseldorf, Germany

However, no one had attempted to collect and

synthesize all of these data prior to . . .
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S. Lochbrunner1, M. Motzkus1, G. Pichler*, K. L. Kompa1, P. Hering1, 2

1Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
2 Institut für Lasermedizin, Universität Düsseldorf, D-40225 Düsseldorf, Germany

However, no one had attempted to collect and

synthesize all of these data prior to . . .

Pesl, Lutz & Bergman: Euro. Phys. J. D 10, 247 (2000)

Improved molecular constants
for the X1

Σ
+ and A1

Σ
+ states of NaH

F.P. Pesl, S. Lutz, and K. Bergmanna

Fachbereich Physik, Universität Kaiserslautern, 67663 Kaiserslautern, Germany

They reported new electronic data for v(A) = 6− 9 and v(X) = 2− 8 .

More important – they collected all accessible older data and provided a global

Dunham analysis and RKR potentials for v(X) = 0− 9 and v(A) = 0− 25 .


