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How may we best summarize
what we know about a molecule ?

• structural properties such as bond length(s), bond strength, equilibrium force

constants

• spectroscopic properties: transition energies and relative intensities in pure

rotation, vibration-rotation and electronic spectroscopy, and the number and

energies of unobserved levels

Since the dawn of quantum mechanics, the central paradigm of

spectroscopic data analysis was to explain the patterns of observed

transition energies in terms of expressions for molecular level energies

as functions of vibrational and rotational quantum numbers.

However, this offers little help with:

• collisional properties including virial coefficients, diffusion, thermal conductivity

and other transport properties, and various scattering cross sections

Answer: With a compact, flexible, analytic potential
energy function !



But . . . . . . How do we determine such potentials ?

Ans. . . . from Least-Squares Fits to Experimental Data
{For 3-D Van der Waals molecules since 1974, and for diatomics since ∼ 1990 }

• Simulate experimental data as properties Fi({pj}) of some parametrized analytic

potential energy function V (r; {pj})

• Calculate the partial derivatives of each value of each property w.r.t. each

potential function parameter: ∂Fi({pj})/∂pk
• Compare predictions with experiment, and optimize potential parameters via an

iterative (non-linear) least-squares fit

• For spectroscopic transition energies this is relatively straightforward, since the

data are level energy differences Fi = E(v′, J ′) − E(v′′, J ′), and the partial

derivatives of a level energy w.r.t. parameters pk required for fitting may

readily be generated using the Hellmann-Feynman theorem:

∂E(v, J)

∂pk
=

〈

ψv,J

∣

∣

∣

∣

∂ V (r; {pj})
∂pk

∣

∣

∣

∣

ψv,J

〉

• In diatomic molecule data analysis this approach is (almost) becoming ‘routine’.



But what are the uncertainties associated with such
potentials, and with properties calculated from them?

Part of the answer to this question is certainly straightforward:

• the correlated uncertainties in the parameters determined in the fit tell us about

those uncertainties

• . . . . . . but tell us what ?? . . . and how ??
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potentials, and with properties calculated from them?

Part of the answer to this question is certainly straightforward:

• the correlated uncertainties in the parameters determined in the fit tell us about

those uncertainties

• . . . . . . but tell us what ?? . . . and how ??

Statistics texts tell us that: If a property F ({pj}) is defined by a set of M

parameters {pj} that were determined from a least-squares fit that yielded

parameter uncertainties {u(pj)} and the M×M correlation matrix C ,

the uncertainty in the value of F ({pj}) is:

u(F ) =
√

Dt · C ·D
where D is an M×1 column matrix of elements Dk = u(pk)×

∂F ({pj})
∂pk

and Dt is its transpose (a 1×M row matrix).

This technique may readily be applied to calculate uncertainties in the potential

function itself u{V (r; {pj})} or its eigenvalues u{E(v, J ; {pj})} , since the

required partial derivatives are readily available.



For example, a recent fit to high quality spectroscopic data for the 1 3Σ+
g state of Li2

was used to determine an analytic ‘MLR’ potential energy function for this state

VMLR(r) = De

{

1 − uLR(r)
uLR(re)

e−β(r;{pj})·yp(r)
}2

that bridged a large gap between measurements for levels near the bottom of the

well, and for levels lying very near dissociation.

υ =1

υ =7
υ = 4

2 4 6 8 10
0

4000

8000

12000

16000

r / Å

V(r) / cm−1 13Σg
+

a 3Σu
+

2555 transitions
for 2 isotopologues

υ7,7=62−90 binding
υ6,6=56−84 energies

υ = 56

υ = 60

υ = 65

υ = 70
υ = 80

0 20 40 60 80

14820

14860

14900
υ = 84

13Σg
+

99 PAS data



For example, a recent fit to high quality spectroscopic data for the 1 3Σ+
g state of Li2

was used to determine an analytic ‘MLR’ potential energy function for this state

VMLR(r) = De

{

1 − uLR(r)
uLR(re)

e−β(r;{pj})·yp(r)
}2

that bridged a large gap between measurements for levels near the bottom of the

well, and for levels lying very near dissociation.

υ =1

υ =7
υ = 4

2 4 6 8 10
0

4000

8000

12000

16000

r / Å

V(r) / cm−1 13Σg
+

a 3Σu
+

2555 transitions
for 2 isotopologues

υ7,7=62−90 binding
υ6,6=56−84 energies

υ = 56

υ = 60

υ = 65

υ = 70
υ = 80

0 20 40 60 80

14820

14860

14900
υ = 84

13Σg
+

99 PAS data

How uncertain

are predictions

for levels in

the gap ?
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Calculus readily yields values

of the partial derivatives

∂V (r; {pj})
∂pk

,

while the parameter

uncertainties u(pk) and

correlation matrix C were

provided by the least-squares

fit, so it is straightforward

to calculate the uncertainty

in the potential, unc{V (r)} ,

as a function of r .
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,

while the parameter

uncertainties u(pk) and

correlation matrix C were

provided by the least-squares

fit, so it is straightforward

to calculate the uncertainty

in the potential, unc{V (r)} ,

as a function of r .

A nice result,
but V (r) is not
an observable . . .



Very recently, new very high resolution (±0.000002 cm−1) PAS experiments at UBC

were searching the region ∼ 2000− 3000 cm−1 below dissociation, and those

researchers wanted estimates of the energies and Bv values for levels in that

5000 cm−1 wide intermediate region (and of their uncertainties! ).
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For the level energies, addressing this need is straightforward, since the fit that

determined the optimum model for the potential gave predictions

• for the energies of the ‘missing’ levels,

• for the parameter uncertainties {u(pk)} , and

• for the correlation matrix of the fit C ,

while the required partial derivatives may be generated readily using the

Hellmann-Feynman theorem expression ∂E(v,J)
∂pk

=
〈

ψv,J

∣

∣

∣

∂ V (r;{pj})
∂pk

∣

∣

∣
ψv,J

〉

.



Here we show the level energy uncertainties predicted from the original (2011) fitted

potential that was based on data for v = 1− 7 and v = 56− 84 .
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Here we show the level energy uncertainties predicted from the original (2011) fitted

potential that was based on data for v = 1− 7 and v = 56− 84 .

Now, compare those predictions to the changes |Ev,J(new)− Ev,J(old)| when

the fit was repeated while including the new (2013) data for v = 20− 26 .
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Here we show the level energy uncertainties predicted from the original (2011) fitted

potential that was based on data for v = 1− 7 and v = 56− 84 .

Now, compare those predictions to the changes |Ev,J(new)− Ev,J(old)| when

the fit was repeated while including the new (2013) data for v = 20− 26 .
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Conclude: these predicted uncertainties are realistic!



However . . . predicting the uncertainties in Bv values is not straightforward,

because the partial derivatives ∂Bv/∂pk are not obtained directly. In particular,

from the definition of

Bv ≡ ℏ
2

2µ

〈

ψv,0(r)

∣

∣

∣

∣

1

r2

∣

∣

∣

∣

ψv,0(r)

〉

we see that
∂Bv

∂pk
= 2

(

ℏ
2

2µ

)〈

∂ψv,0(r)

∂pk

∣

∣

∣

∣

1

r2

∣

∣

∣

∣

ψv,0(r)

〉

but how do we determine
∂ψv,0(r)
∂pk

??
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but how do we determine
∂ψv,0(r)
∂pk

??

Ans: The proper way to determine
∂ψ(v,0)
∂pk

and hence
∂Bv
∂pk

starts (as do most

things in my universe) with the radial Schrödinger equation

− ℏ
2

2µ

∂2ψv,J(r)

∂r2
+

[

V (r) +
ℏ
2[J(J + 1)]

2µ r2
− Ev,J

]

ψv,J(r) = 0

Applying the operator ∂/∂pk , defining ψ
(k)
v,J(r) ≡

∂ψv,J(r)

∂pk
,

and separating off terms involving ψv,J(r) from those involving ψ
(k)
v,J(r) , we obtain



− ℏ
2

2µ

∂2ψ
(k)
v,J(r)

∂r2
+

[

V (r) +
ℏ
2[J(J + 1)]

2µ r2
− Ev,J)

]

ψ
(k)
v,J(r)

=

[

∂Ev,J

∂pk
− ∂V (r)

∂pk

]

ψv,J(r)

The homogeneous left-hand side of this equation has exactly the same form as the

original Schrödinger equation, while the right-hand side is known, since solution

of the Schrödinger equation gave us the wavefunction ψv,J(r) , and the Hellman-

Feynman theorem gave us a value for ∂Ev,J/∂pk



− ℏ
2

2µ

∂2ψ
(k)
v,J(r)

∂r2
+

[

V (r) +
ℏ
2[J(J + 1)]

2µ r2
− Ev,J)

]

ψ
(k)
v,J(r)

=

[

∂Ev,J

∂pk
− ∂V (r)

∂pk

]

ψv,J(r)

The homogeneous left-hand side of this equation has exactly the same form as the

original Schrödinger equation, while the right-hand side is known, since solution

of the Schrödinger equation gave us the wavefunction ψv,J(r) , and the Hellman-

Feynman theorem gave us a value for ∂Ev,J/∂pk

This linear inhomogeneous differential equation has exactly the same form as the

one encountered in Hutson’s perturbation theory method for calculating the leading

centrifugal distortion constants (see [J.Phys.B 14, 851 (1981)]), except that in that

case the inhomogeneous part was 2µ
ℏ2

(

Bv − ℏ
2

2µ r2

)

ψv,J(r) .

Thus, it was a straightforward matter to revise/adaptTellinghuisen’s subroutine

for calculating distortion constants to solve the above equation for ψ
(j)
v,J(r) , and

thence to calculate the ∂Bv/∂pk , and hence to generate values of unc(Bv) .
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2
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∂2ψ
(k)
v,J(r)

∂r2
+

[

V (r) +
ℏ
2[J(J + 1)]

2µ r2
− Ev,J)

]

ψ
(k)
v,J(r)

=

[

∂Ev,J

∂pk
− ∂V (r)

∂pk

]

ψv,J(r)

The homogeneous left-hand side of this equation has exactly the same form as the

original Schrödinger equation, while the right-hand side is known, since solution

of the Schrödinger equation gave us the wavefunction ψv,J(r) , and the Hellman-

Feynman theorem gave us a value for ∂Ev,J/∂pk

This linear inhomogeneous differential equation has exactly the same form as the

one encountered in Hutson’s perturbation theory method for calculating the leading

centrifugal distortion constants (see [J.Phys.B 14, 851 (1981)]), except that in that

case the inhomogeneous part was 2µ
ℏ2

(

Bv − ℏ
2

2µ r2

)

ψv,J(r) .

Thus, it was a straightforward matter to revise/adaptTellinghuisen’s subroutine

for calculating distortion constants to solve the above equation for ψ
(k)
v,J(r) , and

thence to calculate the ∂Bv/∂pk , and hence to generate values of unc(Bv) .

But why do we care about the uncertainties unc(Bv) ??



PHYSICAL REVIEW A 87, 052505 (2013)

High-resolution photoassociation spectroscopy of the 6Li2 13
�
+

g
state

Mariusz Semczuk,1 Xuan Li,2 Will Gunton,1 Magnus Haw,1 Nikesh S. Dattani,3

Julien Witz,1 Arthur K. Mills,1 David J. Jones,1 and Kirk W. Madison1

1Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
2Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Department of Chemistry, University of Oxford, Oxford, United Kingdom

These very high resolution experiments (±0.00002 cm−1) resolve splittings due to

spin-spin and spin-rotation interactions.

FJ=N+1 = BvN (N + 1) + (2N + 3)Bv − λv

−

√

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1),

FJ=N = BvN (N + 1), (1)

FJ=N−1 = BvN (N + 1) − (2N − 1)Bv − λv

+

√

(2N − 1)2B2
v + λ2

v − 2λvBv − γvN,

However, the uncertainties in the spin-spin and spin-rotation constants λv

and γv determined from these equations depend on the uncertainty in Bv !



Uncertainties in Bv values calculated from a fitted potential energy function may

now be generated using partial derivatives ∂Bv/∂pk calculated from the ψ
(k)
v,J(r) !
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Let us test these predictions of unc(Bv) by comparing them with changes in the

Bv values upon including the new (2013) v = 20− 26 Li2 data in the fit.
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again . . .we conclude that our predicted uncertainties
are quite realistic!
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In bound→ continuum spectra, the normal observable is the thermal absorption

cross-section

σT (ν) = Aν
∑

v′′,J ′′
Fv′′,J ′′(T )

∑

u

(Eu)
−1/2

∑

J ′

gu S
J ′
J ′′

(2J ′′ + 1)
I(v′′, J ′′, Eu)

which depends on the frequency of the light ν , the temperature of the

sample T , and matrix elements between discrete-level bound-state wavefunctions

ψv′′,J ′′(r) and continuum wavefunctions ψEu,J ′(r) at final-state energy Eu :

I(v′′, J ′′, Eu ∝
∣

∣

∣

〈

ψv′′,J ′′(r)|M(r)|ψE,J ′(r)
〉

∣

∣

∣

2

In most cases, the potential that defines the initial-state wavefunctions ψv′′,J ′′(r)

is known, and the objective is to determine the repulsive potential that determines

the final-state continuum wavefunctions ψEu,J ′(r) .

However, to fit to measured intensities to determine an analytic final-state potential

V (r;{pk}), one requires values of the partial derivatives with respect to its

parameters, and inside the various levels of summation we need to determine:

∂I(v′′, J ′′, Eu;{pj})
∂pk

= 2
∣

∣

∣

〈

ψv′′,J ′′(r)|M(r)|ψEu,J ′(r)
〉

∣

∣

∣

〈

ψv′′,J ′′(r)

∣

∣

∣

∣

∣

M(r)

∣

∣

∣

∣

∣

∂ψEu,J ′(r; {pk})
∂pk

〉



The wavefunction partial derivatives at the core of this expression

ψ
(j)
Eu,J ′

(r; {pk}) ≡ ∂ψEu,J ′(r; {pk})
∂pk

are defined by exactly the same type of linear inhomogeneous differential equation

encountered above:

− ℏ
2

2µ

∂2ψ
(j)
v,J(r)

∂r2
+

[

V (r) +
ℏ
2[J(J + 1)]

2µ r2
− Eu

]

ψ
(j)
v,J(r) = − ∂V (r)

∂pk
ψv,J(r)

that can be solved using the same procedure. However, for the bound-state case

the orthogonality relation arising from the unit normalization

〈ψh|ψh〉 = 1

which means that
∂ 〈ψh|ψh〉

∂p
= 0 = 2

〈

∂ψh
∂p

∣

∣

∣

∣

ψh

〉

allowed us to project out the homogeneous contribution from the general solution

of our inhomogeneous differential equation.

For continuum wavefunctions, however, this does not work, because the

inhomogeneous term introduces a ‘phase shift’ that prevents the homogeneous

solution component from simply being projected out!
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Conclusions

• Application of the expression u(F ) =
√
Dt · C ·D can yield a very

illuminating understanding of the uncertainties in an analytic potential energy

function determined from a fit.
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Conclusions

• Application of the expression u(F ) =
√
Dt · C ·D can yield a very

illuminating understanding of the uncertainties in an analytic potential energy

function determined from a fit.

• Applying the above expression using Hellman-Feynman theorem partial deriva-

tives ∂E(v,J)
∂pk

=
〈

ψv,J
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∣
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∣

∣
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〉

can give very useful estimates of the

uncertainties in level energies generated from a fitted potential energy function
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• Applying the above expression using wavefunction derivatives obtained by

solving the linear inhomogeneous differential equation
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2µ r2

− Ev,J)
]

ψ
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[

∂Ev,J
∂pk
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]

ψv,J(r)
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• Applying the above expression using wavefunction derivatives obtained by

solving the linear inhomogeneous differential equation
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allows us to generate predicted uncertainties in any property calculated from

an expectation value or matrix element of the wavefunctions ψv,J(r)

• However, we do not (yet!) know how to use solutions of the above

equation to calculate partial derivatives of matrix elements involving

continuum wavefunctions.
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]

ψv,J(r)

allows us to generate predicted uncertainties in any property calculated from

an expectation value or matrix element of the wavefunctions ψv,J(r)

• However, we do not (yet!) know how to use solutions of the above

equation to calculate partial derivatives of matrix elements involving

continuum wavefunctions.
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Recalling the NaH case

from the previous paper . . .

we see that the predicted

uncertainties are indeed

large where we expect !



Our undergraduate d.e. course taught us that the general solution of a linear

inhomogeneous differential equation is a linear combination of the ‘particular

solution’ ψp with an arbitrary multiple of the associated ‘homogeneous’ solution

ψh

ψg = ψp + a× ψh

For discrete bound states, the unit normalization of the wavefunction shows that

ψp and ψh must be orthogonal, since

〈ψh|ψh〉 = 1

then

∂ 〈ψh|ψh〉
∂p

= 0 = 2

〈

∂ψh
∂p

∣

∣

∣

∣

ψh

〉

This allowed us to take an inner product an project out the unwanted

homogeneous solution component and retain only the ‘particular solution’.

For continuum wavefunctions, however, this does not work, because the

inhomogeneous term introduced a ‘phase shift that prevents the homogeneous

solution component from being simply projected out!



People who didn’t know any better (or are lazy about coding), may calculate these

derivatives by differences:

∂I (v′′, J ′′, E; {pk})
∂pk

≈ I (pk +∆pk, {pk}j 6=k)− I (pk −∆pk, {pk}j 6=k)
2∆pk

However, this approach has significant ‘overhead’ costs:

• For an M−parameter fit, the entire simulation calculation must be performed

2M + 1 times in each cycle of the fit.

• One must fuss over the choice of the parameter increment ∆pk

– ∆pk needs to be ‘small’ for the derivatives to be accurate

– If ∆pk is too small, the loss of significant digits in the differences

I (pk + ∆pk, {pk}j 6=k)− I (pk −∆pk, {pk}j 6=k) reduces the accuracy

– Because the sensitivity of the data to changes in different parameters may

differ by many orders of magnitude, no simple % change rule will suffice
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• For an M−parameter fit, the entire simulation calculation performed be done

2M + 1 times in each cycle of the fit.
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– ∆pk needs to be ‘small’ for the derivatives to be accurate

– If ∆pk is too small, the loss of significant digits in the differences

I (pk + ∆pk, {pk}j 6=k)− I (pk −∆pk, {pk}j 6=k) reduces the accuracy
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Thus, we would like to be able to address this problem directly and obtain the

exact partial derivatives that determine:

〈

ψv′′,J ′′(r)

∣

∣

∣

∣

∣

M(r)

∣

∣

∣

∣

∣

∂ψEu,J ′(r; {pk})
∂pk

〉


