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Better Chemical Inventories yield better predictions	
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•  HNCNH discounted due to low assumed abundance	


•  Duvernay et al. (2005): conversion in water ice much more efficient 	
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Once a candidate line is assigned, the assumption of optical thinness 
under LTE conditions allows predictions of intensities of additional 
confirming transitions …	

	

Hence, a key test of the correctness of the assignment of a transitions 
is that any other transitions connected by favorable transition 
probabilities must also be present if the relative intensity predictions 
lead to detectable signals levels.	


-Snyder et al. (2005)	
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100 K	


At LTE - 36 GHz lines always 
stronger than 4 GHz lines	

	

At low-temperatures, 36 GHz lines 
strongest	
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What is the probability that the lines at 4 GHz are the result of 
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Probability of one line falling within one FWHM: 0.75%	
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Convincing, but what about 
the missing transitions?	
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HNCNH emission is not detectable in LTE given current 
sensitivity limits.  	


	

Maser activity allowed for the detection of this very low-

abundance molecule.	

	


A new methodology for searching for very low-abundance, but 
important molecular species.	
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Take Home Message	


When searching for a new 
molecular species, always 
check energy levels for 
possibility of masing	
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