OPTICAL ELECTRON PARAMETER SEMICONDUCTING NANOSTRUCTURES

N. P. NETESOVA, M. V. Lomonosov Moscow State University, Physics Faculty, 119992, Moscow, Sparrow Hills, Russia.

Problem: to not use the classical Kramers-Kronig integral transformation and to define all optical electron oscillation parameters for any energy point from semiconducting nanostructure experimental reflection spectra^a. Within the untied oscillation model the calculation technique of all semiconducting heterostructure optical parameters by the intermediate functions $(\hbar \cdot \omega_{\pi}, \hbar \cdot \omega_{n}, \hbar \cdot \Gamma)$ are the plasma, effective natural, radiant friction energies in eV, $2 \cdot \pi \cdot \hbar$ is the Planck constant) is presented. As an example the optical parameters of PbS, PbSe, PbTe and GaAs, GaP between 0 and 25 eV in any spectrum region are established. The consistent approximation approach of the reflectance factor R to real value is advanced. As a result, all heterostructure basic electron optical functions $(\hbar \cdot \omega_p, \hbar \cdot \omega_{pm}, \hbar \cdot \omega_c, \hbar \cdot \gamma)$ are the plasma, plasma maximum, effective natural, radiant friction energies, ε_r , ε_t , n_r , n_t are the real and imaginary components of the dielectric ε and refractive index n functions, accordingly, $(\varepsilon_r)_{max}$, $(\varepsilon_r)_{min}$, $(\hbar \cdot \omega) \bullet \varepsilon_t$ is conductivity, $(\hbar \cdot \omega) \bullet n_t = (c \cdot \hbar/2) \bullet \alpha$, where c is the light velocity, α is absorption coefficient, $L = Im(-1/\varepsilon)$ are electron lossis, equal imaginary component of the minus reciprocal dielectric function ε , $\hbar \cdot \omega \bullet L = (\hbar \cdot \omega) \bullet Im(-1/\varepsilon)$ are effective electron lossis) calculated by the intermediate functions in any electron optical spectrum region. Then, for GaP experimental reflection spectra it is selected the point $\hbar^2 \cdot \omega^2 = 10.5625 \bullet 10^{-4}$, the intermediate parameters are $\hbar^2 \cdot \omega^2_{\pi} = 10.5625 \bullet 10^{-4}$, $\hbar^2 \cdot \omega^2_n = 9.03130933157 \bullet 10^{-4}$, $\hbar^2 \cdot \Omega^2 = 1.875029665786 \bullet 10^{-4}$, the basic parameters are $\hbar^2 \cdot \omega^2_{\pi} = 19.5902684716$ \bullet 10^{-4} , $\hbar^2 \cdot \omega^2_{\pi} = 5.28479085993 \bullet 10^{-4}$, $\hbar^2 \cdot \gamma^2 = 0.79237637701 \bullet 10^{-4}$ for 12 symbol computation. By presented method the nanostructure oscillation electron parameters are determined for device producing.

^aN. P. Netesova, NGS12 Proceedings, Editors: J. Kono, Jean Leotin, Toulouse, France, 2, 178-183, (3-7 July 2005)