FOURIER-TRANSFORM SPECTROSCOPY OF I $_2$ (D-X) EMISSION FOLLOWING OPTICAL-OPTICAL DOUBLE RESONANCE EXCITATION OF THE I $_2$ (E) STATE

<u>VADIM A. ALEKSEEV</u>, Institute of Physics, St.Petersburg State University, Peterhof, 198504 Russia; AMANDA J. ROSS, Laboratoire de Spectrométrie Ionique et Moléculaire, Université' de Lyon (Lyon 1), 69622 Villeurbanne, France.

The E 0_g^+ ion-pair state of I_2 molecule may be excited by the optical-optical double resonance (OODR) via the valence state B 0_u^+ , $I_2(X$ $0_q^+) + hv_1 \rightarrow I_2$ (B 0_u^+) + $hv_2 \rightarrow I_2$ (E 0_q^+).

Emission spectra of pure I_2 vapor selectively excited in this way show not only ransitions from the E 0_g^+ state, but also D $0_u^+ \to X$ 0_g^+ transition in the near ultraviolet. Typically the populated levels in the D 0_u^+ state are located less than 300 cm^{-1} below the laser-excited level. In this contribution we examine rotationally resolved Fourier-transform spectra of the D $0_u^+ \to X$ 0_g^+ emission following OODR excitation of various E 0_g^+ v, J levels with single mode cw dye lasers. We show that the E $0_g^+ \to D$ 0_u^+ population transfer obeys the $J_D = J_E \stackrel{+}{-} 1$, $J_C = J_C \stackrel{+}{-} 1$ levels is the most probable although in some cases, $J_D = J_E - 1$ and $J_D = J_E + 1$ have significantly different populations.