INFRARED ABSORPTION OF CH₃SONO DETECTED WITH TIME-RESOLVED FOURIER-TRANSFORM SPEC-TROSCOPY

<u>YUAN-PERN LEE</u>, Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan; JIN-DAH CHEN, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.

A step-scan Fourier-transform spectrometer coupled with a 6.4-m multipass absorption cell was employed to detect time-resolved infrared absorption spectra of reaction intermediates produced upon UV irradiation of a flowing mixture of CH_3SSCH_3 and NO_2 in CO_2 . Irradiation of CH_3SSCH_3 at 248 nm produces CH_3S radicals that subsequently react with NO₂. Under a total pressure of 100 Torr, we observed bands near 1560 cm⁻¹, assignable to mainly the N=O stretching mode of CH_3SONO , with a small contribution from CH_3SNO_2 . Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predicted the geometry, vibrational wavenumbers, and rotational parameters of CH_3SONO and CH_3SNO_2 . Based on these predicted rotational parameters, the simulated absorption band agrees satisfactorily with experimental results. Under a total pressure of 16 Torr, bands near 1560 and 1260 cm⁻¹ are assigned to NO_2 asymmetric and symmetric stretching modes of CH_3SNO_2 , respectively; the former is overlapped with the N=O stretching mode of CH_3SONO . An additional band near 1070 cm⁻¹ is assigned to the S=O stretching mode of CH_3SONO , rather than CH_3SNO_2 , as a major product.

^aL.-K. Chu and Y.-P. Lee, J. Chem. Phys. <u>133</u>, 184303 (2010).