DEHYROGENATION OF ETHYLENE: SPECTROSCOPY AND STRUCTURES OF La(C_2H_2) AND La(C_4H_6) COMPLEXES

SUDESH KUMARI, MOURAD ROUDJANE, and DONG-SHENG YANG, Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055.

Hydrogen elimination is observed in the reaction of laser-ablated La atoms and ethylene (C_2H_4) in a pulsed molecular beam source. Dehydrogenated products, $La(C_2H_2)$ and $La(C_4H_6)$, are identified by time-of-flight mass spectrometry and studied by pulsed-fieldionization zero-electron kinetic energy spectroscopy and density functional theory calculations. $La(C_2H_2)$ is determined as a triangle (C_{2v}) in the ²A₂ ground electronic state, where La binds with C_2H_2 in a two-fold mode (η^2) . $La(C_4H_6)$ is identified as a diligand species with La being sandwiched between C_2H_2 and C_2H_4 , each in a two-fold binding mode, and the complex is in the ²A₁ ground electronic state. The adiabatic ionization energies of $La(\eta^2-C_2H_2)$ and $La(\eta^2-C_2H_2)(\eta^2-C_2H_4)$ are measured to be 41174(5) and 39405(5) cm⁻¹, respectively. $La^+-C_2H_2$ and $La^+-C_4H_6$ stretching and C-H bending frequencies of the corresponding ions are also determined, and the vibrational assignments are confirmed with deuterated ethylene measurements.