NOVEL PATTERNS OF TORSION - INVERSION TUNNELING AND TORSION - ROTATION COUPLING IN THE ν_{11} CH - STRETCH REGION OF CH_3NH_2

<u>MAHESH B DAWADI</u>, SYLVESTRE TWAGIRAYEZU, C. MICHAEL LINDSAY,^a AND DAVID S. PERRY, Department of Chemistry, The University of Akron, OH 44325-3601; LI-HONG XU, Department of Physics, Centre for Laser, Atomic and Molecular Studies (CLAMS) University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5.

The high-resolution infrared spectrum of CH₃NH₂ has been recorded using slit-jet absorption spectroscopy in the ν_{11} asymmetric CHstretch region (2965 to 3005 cm⁻¹) with resolution of 0.003 cm⁻¹. The 580 lines, assigned by ground state combination differences, represent 27 subbands with $|K'| \leq 2$ for the A, B, E_1 and E_2 symmetries. Several of the observed subbands are split by perturbations. The analysis of spectrum shows that the patterns of the torsion-inversion tunneling splittings are qualitatively different from the ground state. In addition, the low - J splittings between |K'| = +|K'| and -|K'| are greatly reduced relative to the ground state in both the E_1 and the E_2 species, indicating that torsion-rotation coupling is suppressed in the ν_{11} CH-stretch excited state.

^aPresent address: U.S. Air Force Research Laboratory, 2306 Perimeter Rd, Eglin AFB, FL 32542-5910