MEASUREMENT OF CH₃D ABSORPTION CROSS SECTIONS, PRESSURE BROADENING, AND SHFT COEFFICIENTS IN THE 1.65 μm SPECTRAL REGION BY USING CONTINUOUS AVE CAVITY RING-DOWN SPECTROSCOPY

<u>YONGXIN TANG</u>, SHAOYUE L. YANG, KEVIN K. LEHMANN, Department of Chemistry and School of Medicine, University of Virginia, Charlottesville VA, 22904-4319; D. CHRIS BENNER, Department of Physics, College of William and Mary, Box 8795, Williamsburg, VA 23187-8795.

Quantitative spectroscopy of CH₃D in the near-IR is of importance for an ongoing project to build an instrument to measure the H/D isotopic ratio of methane gas. Continuous-wave cavity ring-down spectroscopy (CRDS) has been used to examine the absorption cross sections, the pressure-broadening and pressure-shift coefficients at around 1652 nm. The absorption cross sections of CH₃D were quantified in the wavenumber region between 6046 and 6060 cm⁻¹. The maximum peak is located at 6055.17 cm⁻¹, which gives $(8.58 \pm 0.37) \times 10^{-21}$ cm²/molecule at the total pressure of ~ 8.2 Torr of the N₂ buffer gas. By using the small step size of the laser wavenumber scan, we measured the pressure-broadening effects, and the pressure-shift effects, on CH₄ and CH₃D absorption lines. The N₂, O₂ and CO₂ pressure broadening coefficients of CH₃D are 0.058, 0.054 and 0.049 cm⁻¹/atm, respectively, at the wavenumber we employed. Under the experimental conditions we used, N₂ and O₂ have very similar pressure broadening effects on CH₃D is very similar to those of CH₄. At the wavenumber we employed, the same values of N₂ and O₂ pressure-shift coefficient , -0.012 cm⁻¹/atm, and a little higher value of CO₂, -0.013 cm⁻¹/atm, were found.