SPECTROSCOPIC CHARATERIZATION OF ThF AND THE LOW-LYING STATES OF ThF+

BEAU J. BARKER, IVAN O. ANTONOV, and MICHAEL C. HEAVEN, Department of Chemistry, Emory University, Atlanta, GA 30322.

Theoretical calculations predict that internal electric fields as high as 90 GV/cm can be attained by polarizing the ${}^{3}\Delta_{1}$ state of ThF^{+a} Consequently, this ion is of interest for investigation of the dipole moment of the electron. However, spectroscopic data have not been reported previously for ThF or ThF⁺. We have used laser induced fluorescence and resonantly enhanced two-photon ionization to examine ThF. Multiple electronic transitions were observed in the 19530-21300 cm⁻¹range. Rotationally resolved data have been obtained, and the ground state is shown to be $X^{2}\Delta_{3/2}$. Pulsed field ionization - zero electron kinetic energy spectra have been recorded for the ThF+ cation. Vibronic progressions of the $X^{1}\Sigma^{+}$ and excited ${}^{3}\Delta$ states have been identified. The term energy for the ${}^{3}\Delta_{1}$ state was found to be T_{0} =330 cm⁻¹. Details of the experiments and spectroscopic constants for ThF and ThF⁺ will be reported.

^aE. R. Meyer and J. L. Bohn, Phys. Rev. A At., Mol., Opt. Phys. <u>78</u>, 010502/1 (2008). "Prospects for an electron electric-dipole moment search in metastable ThO and ThF+"