
Modelblocks Development Repository

November 6, 2019

Contents
1 Overview 1

2 Annotation Format 2
2.1 Syntactic Markup . 2
2.2 Semantic Markup . 2

3 Files for Annotation 3

4 Release Files 4

5 Update Files 4

6 Report Files 4

1 Overview
Modelblocks (‘modelblocks-release’) provides toolchains for prediction and evaluation of linguis-
tic phenomena, like delimitation and classification of recursive signs (e.g. parsing), and psycholin-
guistic phenomena, like reading latencies and observations of neural activity or blood oxygena-
tion, for the purpose of evaluating theories of sentence processing. The Modelblocks development
repository (‘modelblocks-repository’) provides toolchains for developing annotated resources in
support of these experiments. These toolchains are organized into recursive sub-recipes for gen-
erating files with structured filenames, called make items, using the make build manager. Make
items whose filenames conform to the Modelblocks sub-recipe syntax can be automatically gener-
ated by a make command from any directory containing a recipe file that includes pointers to rele-
vant Modelblocks sub-recipe files. The resulting make items may contain automatically-generated
theoretically-motivated predictions or reports that evaluate the linguistic and psycholinguistic ac-
curacy of these predictions, and thus provide evidence for or against the theories that motivate
them.

1

2 Annotation Format
Modelblocks supports annotation of nested linguistic signs associated with scoped and inherited
elementary predication structures, implemented as cued associations in a distributed associative
memory (Rasmussen and Schuler, 2018), using a generalized categorial grammar notation based
on that of Nguyen et al. (2012) and coreference and scope annotations based on those of Schuler
and Wheeler (2014).

2.1 Syntactic Markup
Each annotation file contains a sequence of trees or delimiters between paragraphs or discourses:

⟨file⟩ Ð→
⎛

⎜

⎝

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

⟨tree⟩
‘!PARABREAK’
‘!DISCBREAK’

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

⎞

⎟

⎠

∗

A tree may be recursive bracketing around a nonterminal category label, followed by zero or more
semantic markups, followed by one or more trees; or simply a token in a sentence:

⟨tree⟩ Ð→ ‘(’ ⟨category-label⟩ (⟨semantic-markup⟩)
∗

(‘ ’ ⟨tree⟩)
+

‘)’

⟨tree⟩ Ð→ ⟨[-,:;.!?$%A-Za-z0-9]+⟩

As described in Nguyen et al. (2012), a category label may consist of two other category labels
connected by a type-combining operator, or may consist of a pair of brackets around another cate-
gory label, or may consist of a primitive category:

⟨category-label⟩ Ð→ ⟨category-label⟩ ‘-’ ⟨[a-z]⟩ ⟨category-label⟩
⟨category-label⟩ Ð→ ‘{’ ⟨category-label⟩ ‘}’
⟨category-label⟩ Ð→ ⟨[A-Z][a-z]+⟩

2.2 Semantic Markup
A semantic markup may specify an operation or application of a grammatical inference rule, or
specify an antecedent for an anaphor, or specify a scope parent, or specify a unary lexical inference
rule to define the lexical semantics of a token.

⟨semantic-markup⟩ Ð→ ‘-o’ ⟨[A-Z]⟩ (specifies rule ‘a’ variant if annotated on left child, ‘b’ if on right)

⟨semantic-markup⟩ Ð→ ‘-n’ ⟨[0-9]+⟩ (specifies anaphor association to nuclear scope of numbered token)

⟨semantic-markup⟩ Ð→ ‘-n’ ⟨[0-9]+⟩ ‘r’ (specifies anaphor association to restriction of numbered token)

⟨semantic-markup⟩ Ð→ ‘-w’ ⟨[0-9]+⟩ (specifies weak association to nuclear scope of numbered token)

⟨semantic-markup⟩ Ð→ ‘-w’ ⟨[0-9]+⟩ ‘r’ (specifies weak association to restriction of numbered token)

⟨semantic-markup⟩ Ð→ ‘-s’ ⟨[0-9]+⟩ (specifies scope association to nuclear scope of numbered token)

⟨semantic-markup⟩ Ð→ ‘-s’ ⟨[0-9]+⟩ ‘r’ (specifies scope association to restriction of numbered token)

⟨semantic-markup⟩ Ð→ ‘-x’ ⟨[A-Z]+⟩ (specifies a lexical semantic association by name)

2

Semantic markup can also specify patterns for rewriting tokens into lexical semantic graph equa-
tions:

⟨semantic-markup⟩ Ð→ ‘-x’ ⟨str-0⟩ (‘%’ ⟨str-n⟩)
N

‘|’ ⟨repl-0⟩ (‘%’ ⟨repl-m⟩)
M≤N

⟨str-n⟩ Ð→ ⟨[-,:;.!?$%ˆ=A-Za-z0-9]*⟩
⟨repl-n⟩ Ð→ ⟨[-,:;.!?$%ˆ=A-Za-z0-9]*⟩

which match a sequence of ⟨str-n⟩ and wildcard characters ‘%’ to an input string, then form an out-
put string by replacing each wildcard-matched text and instance of ⟨str-n⟩ with the corresponding
wildcard-matched text and instance of ⟨repl-n⟩ (if it exists), preserving their order. The initial input
string for these rewrites has the form of a predicate constant, consisting of the category label of
the token (the preterminal symbol in the tree), followed by a colon, followed by the token (the
corresponding terminal symbol):

⟨predicate-constant⟩ Ð→ ⟨category-label⟩ ‘:’ ⟨[A-Za-z0-9]+⟩

The final output string produced by these rewrite rules is either an empty string (specifying no
lexical semantic constraints), or a graph equation, which may consist of a conjunction of other
graph equations, a specification that one path of association labels (read from left to right) leads to
the same referential state as another path of association labels, or a specification that one path of
association labels leads to a predicate constant:

⟨graph-eqn⟩ Ð→ ⟨graph-eqn⟩ ‘ˆ’ ⟨graph-eqn⟩

⟨graph-eqn⟩ Ð→ (⟨assoc-label⟩)
+

‘=’ (⟨assoc-label⟩)
∗

⟨graph-eqn⟩ Ð→ (⟨assoc-label⟩)
+

‘=’ ⟨predicate-constant⟩

Association labels in these graph equations consist of single characters – numerals for participant
associations, ‘s’s for scope associations, other lower case letters for inheritance associations, and
upper case letters for scaffolding associations (used to assemble structures not cued from a token’s
signified referential state):

⟨assoc-label⟩ Ð→ ⟨[0-9a-zA-Z]⟩

3 Files for Annotation
Annotations of syntactic and semantic information use different indentation styles, to simplify an-
notation. Syntactic annotation files use lisp-style indentation and do not contain token numbers, to
facilitate automatic indentation in text editors such as vim. Semantic annotation files use shortened
indentation and contain token numbers, to facilitate antecedent and scope annotation. Filenames of
annotation files each consist of a specification of an annotated corpus followed by a specification
of an indentation style:

annotated corpus
³¹¹·¹¹µ

{
srcmodel/wikisemC1.casp

⋮
}

indentation style
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

{
.annot-syn
.annot-sem

}

3

4 Release Files
Modelblocks produces the release version of annotated corpora by combining the syntactic markup
from corresponding .annot-syn files with the semantic markup from corresponding .annot-sem
files:

annotated corpus
³¹¹·¹¹µ

{
srcmodel/wikisemC1.casp

⋮
}.toktrees

5 Update Files
Modelblocks can produce updates for .annot-syn and .annot-sem files from corresponding
release files:

annotated corpus
³¹¹·¹¹µ

{
srcmodel/wikisemC1.casp

⋮
}.fromtoktrees

indentation style
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

{
.annot-syn
.annot-sem

}

These updates can be incorporated to annotation by making these files and then renaming them
(e.g. moving them with mv) to remove the .fromtoktrees.

6 Report Files
Modelblocks can also produce reports of formatting errors:

annotated corpus
³¹¹·¹¹µ

{
srcmodel/wikisemC1.casp

⋮
}.discgraphs.formerrors

renderings of discourse graphs:

annotated corpus
³¹¹·¹¹µ

{
srcmodel/wikisemC1.casp

⋮
}.discgraphs.pdf

and translations of discourse graphs into lambda-calculus expressions:

annotated corpus
³¹¹·¹¹µ

{
srcmodel/wikisemC1.casp

⋮
}.discexprs

4

References
Nguyen, L., van Schijndel, M., and Schuler, W. (2012). Accurate unbounded dependency recovery

using generalized categorial grammars. In Proceedings of the 24th International Conference on
Computational Linguistics (COLING ’12), pages 2125–2140, Mumbai, India.

Rasmussen, N. E. and Schuler, W. (2018). Left-corner parsing with distributed associative memory
produces surprisal and locality effects. Cognitive Science, 42(S4):1009–1042.

Schuler, W. and Wheeler, A. (2014). Cognitive compositional semantics using continuation de-
pendencies. In Third Joint Conference on Lexical and Computational Semantics (*SEM’14).

5

	Overview
	Annotation Format
	Syntactic Markup
	Semantic Markup

	Files for Annotation
	Release Files
	Update Files
	Report Files

