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● Yet children acquire phonetic categories of their 
native language within the first year (Werker & Tees 
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● Variability is critical for certain types of 
language learning (Gomez 2002, Rost & McMurray 2009) 
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Computational
      Models

e.g. Vallabha et al. (2007), McMurray et al. (2009), Feldman et al. (2013)
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Feldman et al. 2013 results

Distributional Lexical-Distributional

0.45 0.76
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● Stressed, single syllable
● No noise, reduction,   

co-articulation
● No prosodic variability 

(affects vowel quality 
and duration)

Hillenbrand et al. 1995 
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How do models perform given 
more naturalistic data?

● Models help explore what can be learned from 
the input, given some algorithm

● Computational models aren't people; some 
simplification to input must be made

● What is the impact of input simplifications on 
model performance?

● Are conclusions drawn from these models 
reliable? 



  

Overview
● Simulation 1: Replication of Simplified Input

● Simulation 2: More realistic lexical information

● Simulation 3: More realistic acoustic information

k.ay.n.d

k.ah.nx

k.ah.nx



  

Corpora

● Laboratory vowel productions:
– English: Hillenbrand et al. 1995

– Japanese: Mokhtari & Tanaka 2000

● Natural Speech:
– English: Buckeye Speech corpus (Pitt et al. 2007)

– Japanese: R-JMICC corpus (Mazuka et al. 2006)
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Simulation 2: Phonetic Transcription
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Corpus effects of
phonetic transcription

● English: vowels of frequent words reduced to 
schwa in natural speech → increased number 
of phonetic variants

k.ih.n

k.ah.n

k.ae.n

k.n

 k.eh.nk.ae.n

etc.



  

Corpus effects of
phonetic transcription

● English: vowels of frequent words reduced to 
schwa in natural speech → increased number 
of phonetic variants 

● Japanese: less phonetic reduction

     Japanese Word Types

Phonemic Transcription:  751
Phonetic Transcription:    791 

      English Word Types

Phonemic Transcription:  1099
Phonetic Transcription:    1813
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Simulation 3:
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Summary of Results

Phonetic F-Score

English Japanese

Simulation 1: 
Simplified Input 0.78 0.98

Simulation 2: 
Phonetic Transcription 0.46 0.95

Simulation 3:
Realistic Vowels 0.13 0.22



  

Discussion

● There is little variability in simplified input, but a lot 
in the input received by children
– Lexical variability

– Acoustic variability 

● Adding this variability back to the input can 
drastically impact model performance, and may 
have different effects on different languages.

● To explore the learning problem we must have 
ecologically valid datasets



  

Thank You!

NSF IIS-1422987

NSF IIS-1421695

NSF DGE-1343012

OSU Lacqueys reading group 



  

Japanese Long vs Short



  

English versus Japanese Duration



  

CDS versus ADS



  

Speaker Variability



  

Summary of results
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