Explicit Tracking of In-the-Moment Sociolinguistic Evaluation

Martha Austen & Kathryn Campbell-Kibler
The Ohio State University
social meaning is contextual

... on who’s listening (e.g. Lawrence 2018)
... on who’s talking (e.g. Campbell-Kibler 2006)
... on what other sociolinguistic variants a talker uses
 (e.g. Labov et al. 2011)
social meaning is contextual

... on who’s listening (e.g. Lawrence 2018)
... on who’s talking (e.g. Campbell-Kibler 2006)
... on what other sociolinguistic variants a talker uses
 (e.g. Labov et al. 2011)
social meaning is contextual

... on who’s listening (e.g. Lawrence 2018)
... on who’s talking (e.g. Campbell-Kibler 2006)
... on what other sociolinguistic variants a talker uses (e.g. Labov et al. 2011)

quickly gets hard to study because MATH

one solution: study real-time reactions
real time methods

Watson & Clark 2013, 2014

Jones 2016

Hesson & Shellgren 2015

Montgomery & Moore 2016

Austen & Campbell-Kibler 2018
This paradigm is harder than we thought!
- timing not very precise (~ 4-6 sec. lag)
- need lots of participants
• Can we use a real-time method to study reactions to an individual sociophonetic variable, (ING)?

• How does the context in which listeners hear (ING) affect real-time reactions?
 - surrounding (ING) tokens (cf. Labov et al. 2011)
 - talker accent (North Carolina vs California)
experiment 1: participants

\[n = 314 \quad + \quad n = 886 \]

total = 1200
experiment 1: North Carolina talker

11 (ING) tokens / stimulus

<table>
<thead>
<tr>
<th>Description</th>
<th>Num. Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td>200</td>
</tr>
<tr>
<td>all IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING, but excerpts in reverse order</td>
<td>200</td>
</tr>
</tbody>
</table>
procedure

1) real time rating
procedure

1) real time rating

2) after-the-fact rating
results
Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Num. Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td>200</td>
</tr>
<tr>
<td>all IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING, but excerpts in reverse order</td>
<td>200</td>
</tr>
</tbody>
</table>
Mean ratings, single-variant stimuli

- all ING
- all IN
- (ING) token

Rating (Educated)

Time (seconds)
Predict:

Given:
- variant (ING or IN)
- stimulus type (single variant or alternating)

Control for:
- effects of content
- subject pool (museum or online)
- demographic characteristics

ING first or IN first
modeling

Predict:

- variant (ING or IN)
- stimulus type (single variant or alternating)

Given:

- ING first or IN first

Control for:

- effects of content
- subject pool (museum or online)
- demographic characteristics
why does (ING) only matter
(or matter more)
in IN-first stimuli?
a hypothesis

group stereotypes
southern = IN

talker-specific knowledge
Robert = ??

ING ING ING in in ING ...

listener

North Carolina talker
a hypothesis

- **Group stereotypes**
 - *southern = IN*

- **Talker-specific knowledge**
 - *Robert = ??*

```
ing in in in ing . . .
```

- **Listener**

- **North Carolina talker**
a hypothesis

- Group stereotypes
 - Southern = IN

- Talker-specific knowledge
 - Robert = ING

- ING ING ING in in ING ...

Listener

North Carolina talker
a hypothesis

- group stereotypes
 southern = IN

- talker-specific knowledge
 Robert = ING

ING ING ING in in ING ...

North Carolina talker
a hypothesis

- group stereotypes
 - southern = IN
- talker-specific knowledge
 - Robert = ING

ING ING ING in in ING ...

listener

North Carolina talker
a hypothesis

- group stereotypes
 - southern = IN

- talker-specific knowledge
 - Robert = IN

ING ING ING in in ING ...

North Carolina talker

Listener
A hypothesis

Group stereotypes
southern = IN

talker-specific knowledge
Robert = ING

ING ING ING in in ING ...

not surprising

North Carolina talker
a hypothesis

listener

group stereotypes
southern = IN

talker-specific knowledge
Robert = ??

North Carolina talker

in in in ING ING in ...
a hypothesis

listener

North Carolina talker

group stereotypes
southern = IN
talker-specific knowledge
Robert = ??
in in in ING ING in ...

BIZQPUIFTJT
a hypothesis

group stereotypes
southern = IN
talker-specific knowledge
Robert = IN

in in in ING ING in ...

listener

North Carolina talker
A hypothesis

- Group stereotypes: southern = IN
- Talker-specific knowledge: Robert = IN

In in in ING ING in ...

Listener

North Carolina talker
a hypothesis

- group stereotypes
 - southern = IN
- talker-specific knowledge
 - Robert = IN

North Carolina talker

in in in ING ING in ...

listener
A hypothesis

- Group stereotypes
 - Southern = IN
- Talker-specific knowledge
 - Robert = IN

Whoa, I am surprised!!

North Carolina talker
experiment 2: California talker

hypothesis:

(ING) should have bigger effect for ING-first stimuli
experiment 2: California talker

<table>
<thead>
<tr>
<th>Description</th>
<th>Num. Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td>200</td>
</tr>
<tr>
<td>all IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING</td>
<td>201</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING, but excerpts in reverse order</td>
<td>200</td>
</tr>
</tbody>
</table>

13 (ING) tokens / stimulus
experiment 2: participants

\[n = 1201 \]
results
results

<table>
<thead>
<tr>
<th>Method</th>
<th>Num. Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td>200</td>
</tr>
<tr>
<td>all IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-ING</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING</td>
<td>201</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING, but excerpts in reverse order</td>
<td>200</td>
</tr>
</tbody>
</table>
Mean ratings, single-variant stimuli (California talker)

- all ING
- all IN
- (ING) token

Rating (Educated)

Time (seconds)
Mean ratings, single-variant stimuli (California talker)
Mean ratings, single-variant stimuli (California talker)
Predict:

Given:
- variant (ING or IN)
- stimulus type (single variant or alternating)
 - ING first or IN first

Control for:
- effects of content
- demographic characteristics
Predict:

- variant (ING or IN)
- stimulus type (single variant or alternating)

Control for:
- effects of content
- demographic characteristics
interim summary

North Carolina talker

California talker
interim mysteries

• Why does (ING) have a bigger effect for the North Carolina talker?

• Why does guise interact with stimulus type ONLY for the North Carolina talker?

 - statistical noise?

 - talker-specific effects?
after-the-fact ratings
after-the-fact ratings

1) real time rating

2) after-the-fact rating
North Carolina talker

- all ING > all IN (p=.03)
- IN first > ING first (n.s.)
California talker

- all IN > all ING (n.s.)
- ING first > IN first (n.s.)
<table>
<thead>
<tr>
<th></th>
<th>Expected effect of (ING) in ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...real-time ratings?</td>
</tr>
<tr>
<td>North Carolina talker</td>
<td>only/mainly in IN-first stimuli</td>
</tr>
<tr>
<td>California talker</td>
<td>yes</td>
</tr>
</tbody>
</table>
conclusions

• This method is not ideal for studying individual sociophonetic variables.
 - lack of statistical power

• Social meaning is \textbf{(maybe)} contextual on an interaction between talker accent and a talker’s use of specific sociolinguistic variables.
 - but probably in a different way than the hypothesis we presented
Thanks!

This material is based upon work supported by the National Science Foundation under Grant No. 1655014.
Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Num. Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td>200</td>
</tr>
<tr>
<td>all IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING, but excerpts in reverse order</td>
<td>200</td>
</tr>
</tbody>
</table>
results

<table>
<thead>
<tr>
<th></th>
<th>Num. Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td>200</td>
</tr>
<tr>
<td>all IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-ING-ING-ING</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-ING-ING</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-ING-ING-ING-IN, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-ING-ING, but excerpts in reverse order</td>
<td>200</td>
</tr>
</tbody>
</table>
results

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td></td>
</tr>
<tr>
<td>all IN</td>
<td></td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN</td>
<td></td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING</td>
<td></td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td></td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING, but excerpts in reverse order</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Num. Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td>200</td>
</tr>
<tr>
<td>all IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING</td>
<td>201</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING, but excerpts in reverse order</td>
<td>200</td>
</tr>
</tbody>
</table>
results

<table>
<thead>
<tr>
<th></th>
<th>Num. Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>all ING</td>
<td>200</td>
</tr>
<tr>
<td>all IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING</td>
<td>201</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>alternating IN-ING-IN-ING, but excerpts in reverse order</td>
<td>200</td>
</tr>
<tr>
<td>all ING</td>
<td>![Emoticon]</td>
</tr>
<tr>
<td>all IN</td>
<td>![Emoticon]</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN</td>
<td>![Emoticon]</td>
</tr>
<tr>
<td>alternating IN-IN-ING-IN</td>
<td>![Emoticon]</td>
</tr>
<tr>
<td>alternating ING-IN-ING-IN, but excerpts in reverse order</td>
<td>![Emoticon]</td>
</tr>
<tr>
<td>alternating IN-IN-ING-IN, but excerpts in reverse order</td>
<td>![Emoticon]</td>
</tr>
</tbody>
</table>