Concentration analysis: A quantitative assessment of student states
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Multiple-choice tests such as the Force Concept Inver{fé@}) provide useful instruments to probe

the distribution of student difficulties on a large scale. However, traditional analysis often relies
solely on scoregnumber of students giving the correct answehis ignores what can be significant

and important information: the distribution of wrong answers given by the class. In this paper we
introduce a new method, concentration analysis, to measure how students’ responses on
multiple-choice questions are distributed. This information can be used to study if the students have
common incorrect models or if the question is effective in detecting student models. When
combined with information obtained from qualitative research, the method allows us to identify
cleanly what FCI results are telling us about student knowledge20@ American Association of Physics

Teachers.
[DOI: 10.1119/1.1371253

[. INTRODUCTION responses to particular multiple-choice questions. This
method is both a tool to extract information from a research-

Both physics teachers and education researchers have loRgsed multiple-choice test and a tool to be used in the cyclic
observed that students can appear to reason inconsistenfijocess of creating such a test. A method for evaluating and
about physical problenisProblems seen as equivalent by describing the mixed mental state of a class will be described
experts may not be treated using equivalent reasoning b later papers, which also include comparisons with other
students. Qualitative researofbased on interviews and Methods such as factor analy8is. _ _
analysis of open-ended problem solingas documented Ve begin the paper in Sec. Il by giving a brief overview
many different clusters of semi-consistent reasoning studenf the theoretical structure we use to describe student knowl-
use in responding to physics problems. This knowledge hagdge. In Sec. lll we define the concentration factor, a func-
been used in creating attractive distracters for multiplefion that maps the response of a class on a multiple-choice
choice examinatiors that allow one to examine large duestion to the intervdl,1] with zero corresponding to stu-
populations’ dents selec_tmg a random dlstrlbuupn of answers and one

The way that students select wrong answers on such tesg@rresponding to all students selecting the same answer. In
contains a large amount of valuable information on studenpeC. IV we demonstrate how one can use the concentration
understanding. Traditional analyses of multiple-choice exJfactor to analyze a multiple-choice test. In Sec. V we apply
ams focus on the scores—the fraction of students that answé#s analysis as an example to the Force Concept Inventory
each question correctly, and possibly on the correlation belFCl), using data from 14 classes of introductory calculus-
tween correct answers chosen by students. Such an analy§@sed physics for engineers at the University of Maryland
often fails to explain how students produce incorrect an{N=778). In Sec. VI we discuss how a concentration analy-
swers. Based on the understanding of student learning devedis can be used in designing and developing a research-based
oped from qualitative research, we have developed algonultiple-choice test. We conclude with a summary.
rithms to conveniently extract and display such informafion.

The basic idea of our method is to consider that a student’s
knowledge is organized into productive context-dependen
patterns of association we refer sshemasAs a result of Itl A MODEL OF STUDENT KNOWLEDGE
different judgements about context made by students and We work within a framework developed from what has
experts, students can appear to experts to function as i thEB’een learned in neuroscience, cognitive science, and educa-
have multiple(possibly contradictoryschemas at the same ' '

time. Our method is particularly useful when a population oftion research. Research in cognitive science and neuro-
) P y pop Sﬁience has begun to combine to create an understanding of

students responds to a class of physics situations with a smalls structure of human memory. Necessarily and appropri-

number of fairly robust schemas. This circumstance has beeé}ely most research has been focused on the simplest pos-

demonstrated by physics education research to be faw%conglble (but still difficult) issues: what is the nature of working
mon over a wide variety of physics topics and populations. memory, how does learning take place in terms of real bio-
Our method allows us to analyze the complete StUdenItogical structures, etc. Although researchers have developed

responses rather than just identifying the fraction of the timr::a variety of models, there is reasonable agreement on the

they are using the correct approach. The information oby. o qlements and structures. In particular, we rely on the
tained will be useful only if the test is carefully designed

with a good understanding of the student schemas involveEP"oWlng principles.
with each concept. In this paper we discuss an analyticall) Memory is associative.
method for analyzing the concentration/diversity of student2) Cognitive responses are productive.
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(3) Cognitive responses are context depend@mtluding Table I. Three possible distribution patterns of student responses when giv-
the context of the student’s state of mjnd ing a 5-choice multiple-choice question to 100 students.

To understand the learning of complex subjects, such as Choices

college-level physics, we must step beyond models that can  Type A B C D E
currently be confirmed by neuroscience and ask how long=

term memory is structured. To understand this, we focus on :l 58 fg §8 22 25?

the following structures that have been proposed by various i 100 o 0 0 0
researchers in neuroscience, cognitive science, and

educatiorf

(1) Patterns of associatiorieeural nets ) ) S

(2) Primitives/facets are given in Table I. The types of distributions shown there
(3) Schemas represent different concentrations of student solutions.

(4) Mental models Type | represents an extreme case where the responses are
(5) Physical models. evenly distributed among all the choices, just like the results

of random guessing. Type Il is a more typical distribution

We use these terms in the following way. Thattern of  that may occur in our classes; there is a higher concentration
associationis the fundamental linking structure representedon some choices than on others. Type Ill is the other extreme
by connections of neurons and neural net models. An assgase where every student has selected the same choice, giv-
ciation between elements of memory is context dependeritg a 100% concentration.
and, since all the factors determining an activation cannot be It is convenient to construct a simple measure that gives
specified, must be treated probabilistically. Knowledge in-the information on the distribution of the responses. We de-
cludes declarative and procedural elements, with procedurdiie the concentration factarC, as a function of student
being used whenever possible to regenerate recurring patesponse that takes a value in the intef@al]. Larger values
terns as needed in a particular contextprémitive is a rule, ~ represent more concentrated responses with 1 being a per-
often indivisible to the user, that when applied in a physicalfectly correlatedtype-Iil) response ah0 a randonitype-I)
context, produces facet—a statement about how a particu- response. We want all other situations to generate values
lar physical system behaves. Primitives and facets are linkelgetween 0 and 1.
in associative patterns that are context dependent. When aTO construct this measure, suppose we give a single
particular patterr(containing few or many elements ro-  MCSR question withm different choices ta\ students. A
bust and occurs with a high probability in particular contexts single student’s response on one question can be represented
we refer to the pattern of association asademaWe call  with an m-dimensional vectorf{k:(ym RV Vo
schemas that are particularly robust and cohereettal \where k=1,..N represents different students ang;
models If a mental model is based on a set of coherent and- 1(0) if the ith choice is selectednot selectey With a
consistent ideas about physical objects and their propertlﬁacsR : . 5
we call it aphysical model question, only a smgl§ componentRf is nonzero

We assume that we are considering a physics topic tha&nd equals 1. By summing tf& on one question over stu-
has been well studied using qualitative research methods arnt&nts we get the total class response vector for the question:

that a small number of common wai schemas or mental N
models have been identified. We now turn to the question of R— > Re=(Ng,Ngyee iy M), (1)
how to determine the effectiveness of a particular multiple- k=1

choice question in triggering this variety of mental models inwheren; is the total number of students who selected choice
a population. i. Since there is a total dfl responses, we have

m
[ll. THE CONCENTRATION FACTOR E ni=N. (2
I

As we learn from qualitative research into student learnyye can see that the length §factually provides the infor-
ing, student responses to problems in many phys'lcal conteXiiation on the concentration. For a type-lll resporisee
can be considered as the result of their applying a smal able )

number of mental models. If a multiple-choice question is R

designed with these alternatives included as distracters, stu- |R|=N 3)

dent responses should be concentrated on the choices asgo- )

ciated with those models. On the other hand, if the studenté?ld for a type-| response

have little knowledge of the subject, they may act as if they - /[N 2 N

have no models at all, or as if they choose from a wide IRI= (E Xm:\/_ﬁ- 4

variety of different models. In this case, their responses WiIkN N

be close to a random distribution among all the choices'/© demonstrate beloyv that all other situations generate val-

Therefore, the way in which the students’ responses are digies for the length oR betweenN/\/m and N. Given this

tributed can yield information on the students’ state. circumstance, we can easily construct a concentration mea-
sure by subtracting the minimum length and renormalizing.

Definer as the scaled length ®&. We can write

A. Choosing a concentration factor

Suppose we give a multiple-choice single-response \/ﬁ
(MCSR) question with 5 choicefA,B,...,E) to 100 students. = Zi=1n; )
Some possible distributions of the responses for this question N
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where

1
—=<r=1. (6)
m
We chooseC by subtracting the minimum length fromand
renormalizing:

C:\/ﬁx _i):\/mx\@inllnii
Jym-1 ym/  Jym-1 N Jm/’

(7)
As a simple check, it is easy to see that when one ohtlse

e.g.,n;, equalsN (and the rest equa)0C is equal to 1. If all
then;’s are equal € N/m), C becomes zero.

B. Finding the minimum value of C

Table Il. Three-level coding scheme for score and concentration factor.

Score Concentration
S Level (© Level
0-0.4 L 0-0.2 L
0.4-0.7 M 0.2-0.5 M
0.7-1.0 H 0.5-1.0 H

use a two-level coding to characterize the student scores and
the concentration factor. For example, a question with low
score but high concentration will be denoted as an LH-type
response. The response patterns not only provide a measure
of students’ performance but also indicate whether the ques-
tion triggers a common “misconception.” Furthermore, the
pattern of the shift from pre- to post-instruction tells how the
“state” of a class evolves with instruction. For example, the

To show that all other cases generate values between 0 afghe LL often indicates that most of the students have no
1, we prove thaC has only one minimum equal to zero at dominating model on the topi@s revealed by the test being
n;=N/m. To do this, we can use the Lagrange multiplier ysed and their responses are close to the results of random
method. This problem is equivalent to finding the minimumguesses. On the other hand, with similar scores, the type LH

value of |R|? under the constraint of Eq2). Thus we can
write:

s=>, niz—)\(zlni—N ) (8)

where A is the LaGrange multiplier. The extreme b§|2

occurs atVs=0 with A\ chosen to satisfy the constraint. To

find this extreme point we can do the following:
’s =2n;—A=0 X 9
&nj_ Ni=A=0 =3 ©

Sincej is arbitrary, we haven =---=n,,=\/2 and the con-
straint implies

e MMy

which yields
_ 2N 10
A= o (10

At this extreme point|R|? can be calculated to be:

m 2 2 2
> A N N
|R|«29xtreme:;l n?:m(i :m( E) :E' (11
The second derivative 4R|? is
[72|§|2 =2>0 12
an’ ' (12

Therefore, this extreme must represent a minimum.

[V. CONCENTRATION ANALYSIS

In the following sections, we introduce several methods of
using the concentration factor to study different aspects of

the student data.
A. Classifying the response patterns

The first method is to combine the concentration factor
with scores to form response patterns. The simplest way is te

S47

implies that the test triggers a strong incorrect model. The
response types will not give the detail of the student models
but can show if the questions trigger some commolvanal
responses.

To develop an appropriate quantization scheme, we did
simulations for a 5-choice test with 100 student responses
(m=5, N=100). Based on the calculatiodsye decided to
choose a three-level coding scheme with “L” for low, “M”
for medium, and “H” for high as defined in Table II.

A typical research-based MCSR test like the FCI usually
has one correct answer and one or more distracters. If the
students get low scores, their responses are typically either
evenly distributed among the different distracters or concen-
trated on one or two of the distracters. Combining e
factor with scores, we can display the different types of re-
sponses. We describe them using the following categories
(also see Table I)I

One model: Most of the responses are concentrated on one
choice(not necessarily a correct one

Two model: Most of the responses are concentrated on two
choices, often one correct and one incorrect.

Nonmodel: The responses are somewhat evenly distributed
among three or more choices.

The one-model situation is typical for either an LH or an
HH type of response. In an LH case, students have low
scores and most of them picked the same distracter. There-
fore it could be considered as a strong indication that the
question triggers a common incorrect student model.

The two-model situation happens when many of the re-
sponses are concentrated on two choices. If one of the two is

Table Ill. Combining score and concentration factor, we can code the stu-
dent response on a single question with a response pattern. Typical response
patterns when using the three-level coding system are shown.

Implications of the patterns

One model HH One correct model
LH One dominant incorrect model
Two model LM Two possible incorrect models
MM Two popular models
Nonmodel LL Near random situation
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S-C Boundary types are also marked out based on the three-level quantiza-

1 tion scheme in Table II.
0.8 One-Model C. Concentration of the incorrect responses: The&s—T
Region plot
061 LH MH H The concentration factor gives the overall structure of stu-
C dent responses and is dependent on the score. When the
0.4 Bi-Model score is high, students necessarily have chosen a single
LM MM Region dominant response, 90 will have to be close to 1. From
Egs.(13) and(14) it is easy to see that the score determines
0.2 Bistidlorm the absolute boundary of the concentration. The variation of
LL i Region C within the boundary at a certain score is determined by the
0 ‘ ‘ ‘ | distribution of the incorrect student responses. Therefore, if
0 02 04 06 08 1 the detail of the distribution of the incorrect responses is of
S interest, we need to remove the absolute offset created by the

score. In order to disentangle the concentration and the score
Fig. 1. Combining score and concentration factor, we can crea®-&h and to see more detail of the distribution of the incorrect
plot to show the score and concentration results of individual multiple-responses, we can define a new concentration variable. This
choice questiohs. Due to the c_on_straint between the score and concent_ratietén be done by calculating the concentration for the incorrect
factor, data points can only exist in the area between the two boundary Ilne?.esponses. Define this as tlencentration deviationT,
analogous taC by

the correct answer, the response type is an MM; if both m—1 M 22— 1
choices are incorrect, the response type will be an LM. This T'= X =1 - _ (15)
type of response indicates that a significant number of stu- ym—1-1 (N=9) ym—1

dents use one or two incorrect models depending on the gqyation(15) is intrinsically similar to Eq(7) except that
structure of the questions. Sometimes two incorrect reyg geore(correct responges removed from the sum. This
sponses can be the result of a single incorrect model. makesl” and Sindependent. Whatever the scofecan have

The non-model situation happens when student responseg, yajue within the full interval0, 1]. We can also con-
are somewhat evenly distributed over 3 or more of the

. . - L=struct anS—T7 plot to study the details of the incorrect re-
choices. The response pattern is usually an LL. This 'mp“e%ponses Since we now have two independent variables as
that most of the students don't have a strong preference fQh "oy o there is no restriction on the plotting area
any models on this topic and the responses are close to theAIthouéhF has the advantage of being independe'nt of the
results of random guess&s. score and it also provides direct information on the incorrect

) ) responses, the measure of the total concentration is still im-
B. Graphical representation: The S—C plot portant, especially when evaluating the overall model condi-

With information on both score and t@ factor, we can ton. Therefore, in order to properly model the student re-
construct an ‘S—C’' plot, using the score as the abscissa SPONS€s, we often need to consider otNdI" for different

and the concentration as the ordinate. Due to the constraifcPeCt of the datd.
[Eq. (2)] there is an entanglement between the score and the
concentration factor. As a result, data points can only exist in/. CONCENTRATION ANALYSIS OF FCI DATA

certain regions on ai$—C plot. The boundary of this al- . . . .
lowed region can be found mathematically: As an example of the kind of information a concentration

Consider the case where we have responses from 100 st§@lysis can give about an exam and a population, we apply
dents with a 5-choice MCSR questiéN =100, m=5). De- U method to results taken with FCI pre- and post-tests. The
note the score b We then haveN— S) resp;onses.left to data are taken from 14 classes in the introductory semester of

be distributed among the remaining 4 choices. The smalle calculus-based physics course at the University of

. aryland!? The students are mostly engineering majors.
C we can get is when all the\(— S) responses are CloSestt0 ot of the classes were taught with University of

an even distribution among the 4 choices. The larGeet-  \yashington-style tutorials and the other half of the classes
curs when all the | —S) responses are concentrated on ongyere ysing traditional instructiol.

of the 4 choices. Therefore we can write
A. The initial state of our population

N-S|?

J5 4(_4 ) +8? 1 The pre-instruction FCI data of all 14 classes were ana-

Chnin(S) = X - — (13 lyzed with the three-level modeling schemes described in
V5-1 N V5 Table Il. The results are very similar for all classes; there-

and fore, the results of the pre-data analysis are combined.

Table IV is a list of the pre-test response types for all 29
\J5 JVIN=-9)?+5% 1 questions on the FCI test. To avoid bias generated by varia-

CrnalS) = 5 N E : (14 tions (e.g., sizesof the individual classes, the results were

obtained by combining the student data from all the classes
Using Egs.(13) and (14), the boundary of the allowed rather than averaging the results of individual classes. The
region is plotted in Fig. 1. The regions for the six responsedotal number of students in this sampleNs=778.
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Table IV. With University of MarylandUMd) students, we calculated the score and concentrations values for all 29 FCI questions with pre- and post-data
from both tutorial and traditional classes.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Ql4 Q15

S 0.79 0.33 0.42 0.74 0.25 0.58 0.46 0.60 0.27 0.80 0.45 0.70 0.22 0.63 0.34
Cc 0.64 0.50 0.17 0.55 0.40 0.34 0.19 0.35 0.23 0.66 0.33 0.51 0.50 0.43 0.11
HH LH ML HH LM MM ML MM LM HH MM MH LH MM LL

Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29

S 0.65 0.63 0.23 0.82 0.49 0.47 0.24 0.58 0.34 0.49 0.48 0.77 0.27 0.67
C 0.50 0.47 0.41 0.70 0.23 0.20 0.50 0.34 0.08 0.24 0.19 0.61 0.28 0.50
MH MM LM HH MM ML LH MM LL MM ML HH LM MH

As shown in Table V, the student responses can b&-C plots of pre- and post-data for both the tutorial and
grouped into seven categories. The HH and MH types showraditional classes. Each point represents a question and the
that the students are doing well on those topics even beforgectors represent the shifts of pre- and post-results averaging
instruction. The MM type implies that some students areg|| 29 FC| questions.
doing well but a significant number of students, usually more |t js easy to see that the pre-states for both classes are
than 30%, have a tendency to use a common incorreimilar, but the tutorial class has a much larger shift vector
model. More interesting results come from the LM and theygyard the direction of higher score with larger concentra-
LH types, which are strong indications for the existence Ofion “\which indicates that more students favor the correct
common incorrect models. The content of the questions sugyqdels, From Fig. 2, we also see that many questions have
gests that most of the questions with LM and LH types dea) \ 5nq | M types of responses on pre-test. This implies that
Vl\‘l"th ttWOHFrl‘:yS'CS coq_ceptsf, tqe tfrt])rce—motlon_. relatio d” Ia”dthe FCI has been successful in finding attractive distracters.

ewton Iil. Force-motionreter 1o the common nee Model  £rom Taple Vv, the 29 questions can also be separated into
that assumes that motion requires an unbalanced force, Wh'{ﬁree groups based on student performance measured with
Newton lll refers to the common na model that assumes pre-instruction scores—high, medium, and IHuSince the

the larger or more active agent will produce the larger; . . .
forcel* Table VI shows the percentage of students selectin .'gh performance group is very close to the favorable situa-
: ion, the low performance group often has a much larger

the most popular distracters of the questions with LH an o . .
LM types gf Pesponses. A brief consigleration of the distract.contribution on the overall improvement. Therefore the shift

ers in the testoriginal version'® confirms that these ques- Qf the low perfoymance group should reveal more informa-
tions are associated with two ‘mal models: force—motion 10N about the differences between the two treatments.

and Newton II1. The low performance group consists o_f 9 questions with
With low scores and also low concentratiobL type),  LLs LM, and LH types of responses. In Fig. 3, we plot the
questions 15 and 24 represent a different situation where the—C shift of these 9 questions. The tutorial classes shift
students did not predominantly favor one or two particulartoward higher scores and concentrations and the final states
choices. Interestingly, both of the questions deal with deare mostly in the HH region. On the other hand, students in
tailed physical processes that require an integration of varitraditional classes have some improvement with their scores
ous pieces of physics knowledge. To further clarify the exacand the final states are mostly in the MM region indicating
reason for the distributions in student responses, we need tbat a significant number of students still hold an incorrect
look at the content of the questions and conduct detailednodel and may be in mixed model statés.
research. Sometimes, an LL type can be produced by a ques-We can also study the details of student behavior in dif-
tion with inappropriate representations or by one that misseferent concept groups. In Fig. 4, we plot the shift of the
including what the students really think. questions in the force—motion group. The students behave
similarly to the low performance group except that the initial
states are mostly in the LM and LH regions indicating a
strong initial misconception. Again, after instruction, the tu-
We can use th&-C plot to study the results visually. The torial classes had a large shift bringing the group average
initial states, final states, and the shifts can be representediose to the HH region. The traditional classes only move to
with points and vectors on th&-C plot, where each point the bi-model region.
on the graph represents the average result on one questionWe often need to group all the student data together before
from all students. Since the tutorial and traditional classesalculating the average score and concentration. Averaging
have very different shift vectors, the results from the twoover results for individual classeéwith different sizes can
types of classes are presented separately. Figure 2 gives the misleading and can even yield results outside the allowed

B. Analyzing the S—C plot

Table V. Using the three-level coding scheme, we combined the pre-instructions FCI data from both tutorial and tradition&V ¢&a&#dsl studentsand
identified the response types. The different categories of the student pre-instruction response types are shown.

Types LL LM LH ML MM MH HH

Questions 15, 24 5,9, 18, 28 2,13, 22 3,7,21, 26 6, 8, 11, 14, 17, 20, 23, 25 12, 16, 29 1, 4,10, 19, 27
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Table VI. Student pre-instruction responses on FCI questions related to the

concepts of force—motion and Newton (WUMd students with data from
both tutorial and traditional classes combihed

Force and motion Newton’s third law
Choice % Type Choice % Type
5-c 58% LM 2-a 66% LH
9-c 45% LM 11-d 43% MM
18-a 63% LM 13-c 68% LH
22-c 669% LH
28-d 51% LM

region. For example, averaging the two poif@s 1) and(1,
1) (LH and HH) gives (0.5, 1), a value which is impossible
for a single group.

C. Analyzing the S—-T" plot

We can also us€ to study the concentration of the incor-

rect responses. The average result¥ ¢6r different perfor-

mance groups is calculated and listed in Table VII. We also

graph theS-T" plot for all 29 FCI questions with pre- and

post-data in Fig. 5. From the data, we can see the interesting
result that the™s on low performance questions tend to be

a) Tutorial

1 w ¢ Pre-data

0 Post-data
0.8 | & Pre-average
i ® Post-average

N IR

¢

&

W

0.4

0.2 g . V .

0 0.2 04 06 0.8 1
)

Traditional

¢ Pre-data
0 Post-data
A Pre-average

@ Post-average j
AN
<
. R =
o T o
0.2 o

o
&
0
0 02 0.4 06 0.8 1

S

Fig. 2. TheS-C plot for all 29 FCI questions with pre- and post-data from
both (a) tutorial and(b) traditional classeUMd students

a) Low-Performance Questions (Tutorial)

1 ’Qro Pre-data
0 Post-data
0.8 - APre-average |- b
® Post-average
06
C
04
0.2
0 ‘
0 0.2 04 0.6 0.8 1

b) Low-Performance Questions (Traditional)

' No Pre-data
0 Post-data
0.8 1 a Pre-average
® Post-average /

06
C <>°<> %///
0.4 < =
LF B
02 B /
s

0 0.2 0.4 06 0.8 1
]

Fig. 3. S—C plot for 9 FCI questions2, 5, 9, 13, 15, 18, 22, 24, 28vith
average pretest scores below 40%.

higher than that of mid and high performance questions in-
dependent of the types of instructions and if the data are
taken before or after instruction. Since hidhs indicate
strong distracters, it can be inferred that the low performance
questions on the FCI are dominated by situations where stu-
dent responses have strong alternative models. After instruc-
tion the students giving incorrect responses are still strongly
affected by the distracters of these questions.

One advantage of the-I" plot is thatl is not affected by
score. In Fig. 3 the concentration of student post-
instructional data gets a much larger contribution from the
scores and does not show much additional information. On
the other hand, even with high scores, the student past-
are not affected by scores and are quite scattered just as are
the results from pre-instruction daisee Fig. 5. This implies
that the students giving incorrect respongest necessarily
the same ongsbehave rather similarly before and after in-
struction. Therefore, using a81I" plot, we can get more
information on students’ giving incorrect answers than what
can be obtained with a8-C plot.

In Fig. 6, the results of the low performance questions are
plotted with the shift vectors for all the questions displayed.
This figure dramatically demonstrates that questions on the
FCI on which students perform poorly are primarily ques-
tions on which our student population holds common alter-
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Fig. 4. S—C plot of 5 FCI questiong5, 9, 18, 22, 28related to the force—

a) Force Motion (Tutorial)

1
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O Post-data
0.8 1~ A Pre-average
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C O \_/
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b) Force Motion (Traditional)
1
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06 — N —
c o
04 < T -
H E
© O
0.2 S
0 _
0 0.2 04 0.6 0.8
S

motion mental model.

native mental models. We also find that not only the averag§
results, but also the shifts of individual questions in the low

performance group are similar except for questions 9 and 22.
To understand this phenomenon, we analyze these two ques-
tions in detail. The student responses on FCI questions 9 ari¢” a “normal force” is included (both “b” and “c” fol-

22 are listed in Table VIII.

after instruction. This results in B similar to that of the

sponses of students with traditional instruction only have mi-
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ig. 5. ST plot for all 29 FCI questions with pre- and post-data from both
utorial and traditional class¢&/Md students

low the belief that there is a force in the direction of mojion

As we can see, for FCI question 9, the incorrect responseshis result indicates that after traditional instruction students
of the students in tutorial classes are all significantly reducedre much improved on recognizing the “normal force,”
however, many of them still hold their initial belief that a
pre-instruction data. On the other hand, the incorrect reforce is needed in the direction of motion.

For FCI question 22, the data show only one major dis-

nor changes except for a large drop on choice “b.” There-tracter(choice “b™). The variations of student responses on
fore the post-data have a very hiffhwith student responses other distracters are around 5%. Therefore in this queskion,
depends mostly on the student response on the main dis-
difference between choices “b” and “c” is that in choice tracter. In the tutorial classes, when the student scores show

concentrating on the main distractehoice “c”). The only

Table VII. The average values of score dndor FCI questions in different performance groups defined based on pretest scores are calculated.

Tutorial Traditional
Overall Low Mid High Overall Low Mid High
Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre
S 0.51 0.69 0.28 0.57 0.55 0.69 0.77 0.83 0.49 0.58 0.28 0.41 0.51 0.60 0.74 0.78
r 0.38 0.38 0.53 0.50 0.29 0.31 0.34 0.36 0.35 0.36 0.49 0.50 0.29 0.26 0.35 0.31
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Fig. 6. S—T" plot for 9 FCI questiong2, 5, 9, 13, 15, 18, 22, 24, 28vith

low average pretest scorés40%).

a large pre—post improvement, the pbsis significantly
lower than the prd-. Students with traditional instruction
have much less improvement and the pdsemains high.
On other questions, the pre- and pb&-have similar val-

ues.

VI. DISCUSSION AND SUMMARY

In instruction, with a research-based multiple-choice test, we
can use the concentration factor to evaluate student perfor-
mance and their modeling conditions.

A. Facilitating test development

In PER and education research in other areas, many re-
searchers are working to develop effective multiple-choice
tests in order to be able to evaluate and compare instruction
that is delivered to large populations. Useful multiple-choice
tests may be created in situations in which systematic re-
search on student understanding of the physics concepts has
demonstrated the presence of commorveanodels in a
particular population. In this situation, distracters in
multiple-choice questions can be designed to probe the dis-
tribution of these models. Once a prototype is proposed, it
has to be tested and validated with further research. In this
process, the concentration factor can be used to help further
the development of the test in two ways.

1. A concentration analysis can help confirm the presence
(and level) of erroneous models detected through
research

The design of a test usually starts with detailed student
interviews where the incorrect student models can be identi-
fied. Then we design the multiple-choice questions with dis-
tracters associated with these incorrect student models. Us-
ing the concentration factor to analyze the results of the test,
we can obtain quantitative evaluations and evidence on
whether these distracters match well with the student models,
and/or if the student models detected in interviews are com-
mon to a large population of students. If a distracter is effec-
tive, we often observe a low score but highandI" with
students before instruction.

2. A concentration analysis allows one to detect items
where a relevant distracter may be missing or existing ones
ineffective

When a question is designed appropriately, we usually
will observe an LH or LM type of response with pre-test
data. If the result shows an LL type of response, it indicates
that the distracters are not attractive. This can be caused by
three possible situations:

* None of the distracters reflects a common student model

The concentration factor can be used in many ways in < For the context of the question, there does not exist a
both research and instruction. In research, we can use it to common student model

facilitate the design of effective multiple-choice questions

* All the choices correspond well with the student models,

that can be used to probe student conceptual understanding. and the students are using all the models equally.

Table VIII. Student responses on FCI questions 9 and 22 where the correct choice is shown in bold and the major distracter is italicized.

Question 9 22
Choice a b c d e r a b c d e r
Tutorial
Pre 0.07 0.17 0.47 0.27 0.01 0.40 0.03 0.06 0.67 0.24 0.01 0.76
Post 0.05 0.05 0.2 0.70 0.00 0.42 0.10 0.03 0.2 0.66 0.02 0.30
Traditional
Pre 0.06 0.27 0.42 0.24 0.02 0.29 0.01 0.05 0.66 0.27 0.01 0.81
Post 0.04 0.08 0.38 0.49 0.01 0.55 0.07 0.10 0.42 0.40 0.01 0.51
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