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Multiple-choice tests such as the Force Concept Inventory~FCI! provide useful instruments to probe
the distribution of student difficulties on a large scale. However, traditional analysis often relies
solely on scores~number of students giving the correct answer!. This ignores what can be significant
and important information: the distribution of wrong answers given by the class. In this paper we
introduce a new method, concentration analysis, to measure how students’ responses on
multiple-choice questions are distributed. This information can be used to study if the students have
common incorrect models or if the question is effective in detecting student models. When
combined with information obtained from qualitative research, the method allows us to identify
cleanly what FCI results are telling us about student knowledge. ©2001 American Association of Physics

Teachers.
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I. INTRODUCTION

Both physics teachers and education researchers have
observed that students can appear to reason inconsist
about physical problems.1 Problems seen as equivalent b
experts may not be treated using equivalent reasoning
students. Qualitative research~based on interviews an
analysis of open-ended problem solving! has documented
many different clusters of semi-consistent reasoning stud
use in responding to physics problems. This knowledge
been used in creating attractive distracters for multip
choice examinations2 that allow one to examine larg
populations.3

The way that students select wrong answers on such
contains a large amount of valuable information on stud
understanding. Traditional analyses of multiple-choice
ams focus on the scores—the fraction of students that an
each question correctly, and possibly on the correlation
tween correct answers chosen by students. Such an ana
often fails to explain how students produce incorrect
swers. Based on the understanding of student learning de
oped from qualitative research, we have developed a
rithms to conveniently extract and display such informatio4

The basic idea of our method is to consider that a stude
knowledge is organized into productive context-depend
patterns of association we refer toschemas. As a result of
different judgements about context made by students
experts, students can appear to experts to function as if
have multiple~possibly contradictory! schemas at the sam
time. Our method is particularly useful when a population
students responds to a class of physics situations with a s
number of fairly robust schemas. This circumstance has b
demonstrated by physics education research to be fairly c
mon over a wide variety of physics topics and population5

Our method allows us to analyze the complete stud
responses rather than just identifying the fraction of the ti
they are using the correct approach. The information
tained will be useful only if the test is carefully designe
with a good understanding of the student schemas invo
with each concept. In this paper we discuss an analyt
method for analyzing the concentration/diversity of stud
S45 Phys. Educ. Res., Am. J. Phys. Suppl.69 ~7!, July 2001 http://ojp
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responses to particular multiple-choice questions. T
method is both a tool to extract information from a resear
based multiple-choice test and a tool to be used in the cy
process of creating such a test. A method for evaluating
describing the mixed mental state of a class will be descri
in later papers, which also include comparisons with ot
methods such as factor analysis.6

We begin the paper in Sec. II by giving a brief overvie
of the theoretical structure we use to describe student kno
edge. In Sec. III we define the concentration factor, a fu
tion that maps the response of a class on a multiple-ch
question to the interval@0,1# with zero corresponding to stu
dents selecting a random distribution of answers and
corresponding to all students selecting the same answe
Sec. IV we demonstrate how one can use the concentra
factor to analyze a multiple-choice test. In Sec. V we ap
this analysis as an example to the Force Concept Inven
~FCI!, using data from 14 classes of introductory calculu
based physics for engineers at the University of Maryla
(N5778). In Sec. VI we discuss how a concentration ana
sis can be used in designing and developing a research-b
multiple-choice test. We conclude with a summary.

II. A MODEL OF STUDENT KNOWLEDGE

We work within a framework developed from what ha
been learned in neuroscience, cognitive science, and ed
tion research. Research in cognitive science and ne
science has begun to combine to create an understandin
the structure of human memory. Necessarily and appro
ately, most research has been focused on the simplest
sible ~but still difficult! issues: what is the nature of workin
memory, how does learning take place in terms of real b
logical structures, etc. Although researchers have develo
a variety of models, there is reasonable agreement on
core elements and structures. In particular, we rely on
following principles:7

~1! Memory is associative.
~2! Cognitive responses are productive.
S45s.aip.org/ajp/ © 2001 American Association of Physics Teachers
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~3! Cognitive responses are context dependent~including
the context of the student’s state of mind!.

To understand the learning of complex subjects, such
college-level physics, we must step beyond models that
currently be confirmed by neuroscience and ask how lo
term memory is structured. To understand this, we focus
the following structures that have been proposed by vari
researchers in neuroscience, cognitive science,
education:8

~1! Patterns of associations~neural nets!
~2! Primitives/facets
~3! Schemas
~4! Mental models
~5! Physical models.

We use these terms in the following way. Thepattern of
associationis the fundamental linking structure represent
by connections of neurons and neural net models. An a
ciation between elements of memory is context depend
and, since all the factors determining an activation canno
specified, must be treated probabilistically. Knowledge
cludes declarative and procedural elements, with proced
being used whenever possible to regenerate recurring
terns as needed in a particular context. Aprimitive is a rule,
often indivisible to the user, that when applied in a physi
context, produces afacet—a statement about how a partic
lar physical system behaves. Primitives and facets are lin
in associative patterns that are context dependent. Wh
particular pattern~containing few or many elements! is ro-
bust and occurs with a high probability in particular contex
we refer to the pattern of association as aschema. We call
schemas that are particularly robust and coherentmental
models. If a mental model is based on a set of coherent a
consistent ideas about physical objects and their prope
we call it aphysical model.

We assume that we are considering a physics topic
has been well studied using qualitative research methods
that a small number of common naı¨ve schemas or menta
models have been identified. We now turn to the question
how to determine the effectiveness of a particular multip
choice question in triggering this variety of mental models
a population.

III. THE CONCENTRATION FACTOR

As we learn from qualitative research into student lea
ing, student responses to problems in many physical cont
can be considered as the result of their applying a sm
number of mental models. If a multiple-choice question
designed with these alternatives included as distracters,
dent responses should be concentrated on the choices
ciated with those models. On the other hand, if the stude
have little knowledge of the subject, they may act as if th
have no models at all, or as if they choose from a w
variety of different models. In this case, their responses
be close to a random distribution among all the choic
Therefore, the way in which the students’ responses are
tributed can yield information on the students’ state.

A. Choosing a concentration factor

Suppose we give a multiple-choice single-respo
~MCSR! question with 5 choices~A,B,...,E! to 100 students.
Some possible distributions of the responses for this ques
S46 Phys. Educ. Res., Am. J. Phys. Suppl., Vol. 69, No. 7, July 2
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are given in Table I. The types of distributions shown the
represent different concentrations of student solutions.

Type I represents an extreme case where the response
evenly distributed among all the choices, just like the resu
of random guessing. Type II is a more typical distributio
that may occur in our classes; there is a higher concentra
on some choices than on others. Type III is the other extre
case where every student has selected the same choice
ing a 100% concentration.

It is convenient to construct a simple measure that gi
the information on the distribution of the responses. We
fine the concentration factor, C, as a function of studen
response that takes a value in the interval@0,1#. Larger values
represent more concentrated responses with 1 being a
fectly correlated~type-III! response and 0 a random~type-I!
response. We want all other situations to generate va
between 0 and 1.

To construct this measure, suppose we give a sin
MCSR question withm different choices toN students. A
single student’s response on one question can be repres
with an m-dimensional vectorRW k5(ykl ,...,yki ,...,ykm),
where k51,...,N represents different students andyki

51(0) if the i th choice is selected~not selected!. With a

MCSR question, only a single component ofRW k is nonzero

and equals 1. By summing theRW k on one question over stu
dents we get the total class response vector for the ques

RW 5 (
k51

N

RW k5~n1 ,n2 ,...,ni ,...,nm!, ~1!

whereni is the total number of students who selected cho
i. Since there is a total ofN responses, we have

(
i

m

ni5N. ~2!

We can see that the length ofRW actually provides the infor-
mation on the concentration. For a type-III response~see
Table I!

uRW u5N ~3!

and for a type-I response

uRW u5AS N

mD 2

3m5
N

Am
. ~4!

We demonstrate below that all other situations generate
ues for the length ofRW betweenN/Am and N. Given this
circumstance, we can easily construct a concentration m
sure by subtracting the minimum length and renormalizi
Define r as the scaled length ofRW . We can write

r 5
A( i 51

m ni
2

N
, ~5!

Table I. Three possible distribution patterns of student responses when
ing a 5-choice multiple-choice question to 100 students.

Choices

Type A B C D E

I 20 20 20 20 20
II 50 10 30 5 5
III 100 0 0 0 0
S46001 L. Bao and E. F. Redish
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1

Am
<r<1. ~6!

We chooseC by subtracting the minimum length fromr and
renormalizing:

C5
Am

Am21
3S r 2

1

Am
D 5

Am

Am21
3S A( i 51

m ni
2

N
2

1

Am
D .

~7!

As a simple check, it is easy to see that when one of theni ’s,
e.g.,nj , equalsN ~and the rest equal 0!, C is equal to 1. If all
the ni ’s are equal (5N/m), C becomes zero.

B. Finding the minimum value of C

To show that all other cases generate values between 0
1, we prove thatC has only one minimum equal to zero
ni5N/m. To do this, we can use the Lagrange multipl
method. This problem is equivalent to finding the minimu
value of uRW u2 under the constraint of Eq.~2!. Thus we can
write:

s5(
i 51

m

ni
22lS (

i 51

m

ni2N D , ~8!

where l is the LaGrange multiplier. The extreme ofuRW u2

occurs at¹s50 with l chosen to satisfy the constraint. T
find this extreme point we can do the following:

]s

]nj
52nj2l50, nj5

l

2
. ~9!

Sincej is arbitrary, we havenl5¯5nm5l/2 and the con-
straint implies

(
i 51

m

ni5m
l

2
5N,

which yields

l5
2N

m
. ~10!

At this extreme point,uRW u2 can be calculated to be:

uRW uextreme
2 5(

i 51

m

ni
25mS l

2D 2

5mS N

mD 2

5
N2

m
. ~11!

The second derivative ofuRW u2 is

]2uRW u2

]nj
2 52.0. ~12!

Therefore, this extreme must represent a minimum.

IV. CONCENTRATION ANALYSIS

In the following sections, we introduce several methods
using the concentration factor to study different aspects
the student data.

A. Classifying the response patterns

The first method is to combine the concentration fac
with scores to form response patterns. The simplest way
S47 Phys. Educ. Res., Am. J. Phys. Suppl., Vol. 69, No. 7, July 2
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use a two-level coding to characterize the student scores
the concentration factor. For example, a question with l
score but high concentration will be denoted as an LH-ty
response. The response patterns not only provide a mea
of students’ performance but also indicate whether the qu
tion triggers a common ‘‘misconception.’’ Furthermore, th
pattern of the shift from pre- to post-instruction tells how t
‘‘state’’ of a class evolves with instruction. For example, t
type LL often indicates that most of the students have
dominating model on the topic~as revealed by the test bein
used! and their responses are close to the results of rand
guesses. On the other hand, with similar scores, the type
implies that the test triggers a strong incorrect model. T
response types will not give the detail of the student mod
but can show if the questions trigger some common na¨ve
responses.

To develop an appropriate quantization scheme, we
simulations for a 5-choice test with 100 student respon
(m55, N5100!. Based on the calculations,9 we decided to
choose a three-level coding scheme with ‘‘L’’ for low, ‘‘M’’
for medium, and ‘‘H’’ for high as defined in Table II.

A typical research-based MCSR test like the FCI usua
has one correct answer and one or more distracters. If
students get low scores, their responses are typically ei
evenly distributed among the different distracters or conc
trated on one or two of the distracters. Combining theC
factor with scores, we can display the different types of
sponses. We describe them using the following catego
~also see Table III!:

One model: Most of the responses are concentrated on
choice~not necessarily a correct one!.

Two model: Most of the responses are concentrated on
choices, often one correct and one incorrect.

Nonmodel: The responses are somewhat evenly distrib
among three or more choices.

The one-model situation is typical for either an LH or a
HH type of response. In an LH case, students have
scores and most of them picked the same distracter. Th
fore it could be considered as a strong indication that
question triggers a common incorrect student model.

The two-model situation happens when many of the
sponses are concentrated on two choices. If one of the tw

Table II. Three-level coding scheme for score and concentration factor

Score
~S! Level

Concentration
~C! Level

0–0.4 L 0–0.2 L
0.4–0.7 M 0.2–0.5 M
0.7–1.0 H 0.5–1.0 H

Table III. Combining score and concentration factor, we can code the
dent response on a single question with a response pattern. Typical res
patterns when using the three-level coding system are shown.

Implications of the patterns

One model HH One correct model
LH One dominant incorrect model

Two model LM Two possible incorrect models
MM Two popular models

Nonmodel LL Near random situation
S47001 L. Bao and E. F. Redish
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the correct answer, the response type is an MM; if b
choices are incorrect, the response type will be an LM. T
type of response indicates that a significant number of
dents use one or two incorrect models depending on
structure of the questions. Sometimes two incorrect
sponses can be the result of a single incorrect model.

The non-model situation happens when student respo
are somewhat evenly distributed over 3 or more of
choices. The response pattern is usually an LL. This imp
that most of the students don’t have a strong preference
any models on this topic and the responses are close to
results of random guesses.10

B. Graphical representation: The S– C plot

With information on both score and theC factor, we can
construct an ‘‘S–C’ ’ plot, using the score as the abscis
and the concentration as the ordinate. Due to the const
@Eq. ~2!# there is an entanglement between the score and
concentration factor. As a result, data points can only exis
certain regions on anS–C plot. The boundary of this al-
lowed region can be found mathematically:

Consider the case where we have responses from 100
dents with a 5-choice MCSR question~N5100,m55!. De-
note the score byS. We then have (N2S) responses left to
be distributed among the remaining 4 choices. The sma
C we can get is when all the (N2S) responses are closest
an even distribution among the 4 choices. The largestC oc-
curs when all the (N2S) responses are concentrated on o
of the 4 choices. Therefore we can write

Cmin~S!5
A5

A521
3SA4S N2S

4 D 2

1S2

N
2

1

A5
D ~13!

and

Cmax~S!5
A5

A521
3S A~N2S!21S2

N
2

1

A5
D . ~14!

Using Eqs.~13! and ~14!, the boundary of the allowed
region is plotted in Fig. 1. The regions for the six respon

Fig. 1. Combining score and concentration factor, we can create anS–C
plot to show the score and concentration results of individual multip
choice questions. Due to the constraint between the score and concent
factor, data points can only exist in the area between the two boundary l
S48 Phys. Educ. Res., Am. J. Phys. Suppl., Vol. 69, No. 7, July 2
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types are also marked out based on the three-level quan
tion scheme in Table II.

C. Concentration of the incorrect responses: TheS– G
plot

The concentration factor gives the overall structure of s
dent responses and is dependent on the score. When
score is high, students necessarily have chosen a si
dominant response, soC will have to be close to 1. From
Eqs.~13! and~14! it is easy to see that the score determin
the absolute boundary of the concentration. The variation
C within the boundary at a certain score is determined by
distribution of the incorrect student responses. Therefore
the detail of the distribution of the incorrect responses is
interest, we need to remove the absolute offset created by
score. In order to disentangle the concentration and the s
and to see more detail of the distribution of the incorre
responses, we can define a new concentration variable.
can be done by calculating the concentration for the incor
responses. Define this as theconcentration deviation, G,
analogous toC by

G5
Am21

Am2121
3S A( i 51

m ni
22S2

~N2S!
2

1

Am21
D . ~15!

Equation~15! is intrinsically similar to Eq.~7! except that
the score~correct response! is removed from the sum. This
makesG andS independent. Whatever the score,G can have
any value within the full interval@0, 1#. We can also con-
struct anS–G plot to study the details of the incorrect re
sponses. Since we now have two independent variable
the axes, there is no restriction on the plotting area.

AlthoughG has the advantage of being independent of
score and it also provides direct information on the incorr
responses, the measure of the total concentration is still
portant, especially when evaluating the overall model con
tion. Therefore, in order to properly model the student
sponses, we often need to consider bothC andG for different
aspects of the data.11

V. CONCENTRATION ANALYSIS OF FCI DATA

As an example of the kind of information a concentrati
analysis can give about an exam and a population, we a
our method to results taken with FCI pre- and post-tests.
data are taken from 14 classes in the introductory semest
a calculus-based physics course at the University
Maryland.12 The students are mostly engineering majo
Half of the classes were taught with University
Washington-style tutorials and the other half of the clas
were using traditional instruction.13

A. The initial state of our population

The pre-instruction FCI data of all 14 classes were a
lyzed with the three-level modeling schemes described
Table II. The results are very similar for all classes; the
fore, the results of the pre-data analysis are combined.

Table IV is a list of the pre-test response types for all
questions on the FCI test. To avoid bias generated by va
tions ~e.g., sizes! of the individual classes, the results we
obtained by combining the student data from all the clas
rather than averaging the results of individual classes.
total number of students in this sample isN5778.

-
tion
s.
S48001 L. Bao and E. F. Redish



ost-data

.34
11
Table IV. With University of Maryland~UMd! students, we calculated the score and concentrations values for all 29 FCI questions with pre- and p
from both tutorial and traditional classes.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

S 0.79 0.33 0.42 0.74 0.25 0.58 0.46 0.60 0.27 0.80 0.45 0.70 0.22 0.63 0
C 0.64 0.50 0.17 0.55 0.40 0.34 0.19 0.35 0.23 0.66 0.33 0.51 0.50 0.43 0.

HH LH ML HH LM MM ML MM LM HH MM MH LH MM LL

Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29

S 0.65 0.63 0.23 0.82 0.49 0.47 0.24 0.58 0.34 0.49 0.48 0.77 0.27 0.67
C 0.50 0.47 0.41 0.70 0.23 0.20 0.50 0.34 0.08 0.24 0.19 0.61 0.28 0.50

MH MM LM HH MM ML LH MM LL MM ML HH LM MH
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As shown in Table V, the student responses can
grouped into seven categories. The HH and MH types sh
that the students are doing well on those topics even be
instruction. The MM type implies that some students a
doing well but a significant number of students, usually m
than 30%, have a tendency to use a common incor
model. More interesting results come from the LM and t
LH types, which are strong indications for the existence
common incorrect models. The content of the questions s
gests that most of the questions with LM and LH types d
with two physics concepts, the force–motion relation a
Newton III. Force–motionrefer to the common naı¨ve model
that assumes that motion requires an unbalanced force, w
Newton III refers to the common naı¨ve model that assume
the larger or more active agent will produce the larg
force.14 Table VI shows the percentage of students selec
the most popular distracters of the questions with LH a
LM types of responses. A brief consideration of the distra
ers in the test~original version!15 confirms that these ques
tions are associated with two naı¨ve models: force–motion
and Newton III.

With low scores and also low concentration~LL type!,
questions 15 and 24 represent a different situation where
students did not predominantly favor one or two particu
choices. Interestingly, both of the questions deal with
tailed physical processes that require an integration of v
ous pieces of physics knowledge. To further clarify the ex
reason for the distributions in student responses, we nee
look at the content of the questions and conduct deta
research. Sometimes, an LL type can be produced by a q
tion with inappropriate representations or by one that mis
including what the students really think.

B. Analyzing the S– C plot

We can use theS–C plot to study the results visually. Th
initial states, final states, and the shifts can be represe
with points and vectors on theS–C plot, where each poin
on the graph represents the average result on one que
from all students. Since the tutorial and traditional clas
have very different shift vectors, the results from the tw
types of classes are presented separately. Figure 2 give
S49 Phys. Educ. Res., Am. J. Phys. Suppl., Vol. 69, No. 7, July 2
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S–C plots of pre- and post-data for both the tutorial a
traditional classes. Each point represents a question and
vectors represent the shifts of pre- and post-results avera
all 29 FCI questions.

It is easy to see that the pre-states for both classes
similar, but the tutorial class has a much larger shift vec
toward the direction of higher score with larger concent
tion, which indicates that more students favor the corr
models. From Fig. 2, we also see that many questions h
LH and LM types of responses on pre-test. This implies t
the FCI has been successful in finding attractive distract

From Table V, the 29 questions can also be separated
three groups based on student performance measured
pre-instruction scores—high, medium, and low.16 Since the
high performance group is very close to the favorable sit
tion, the low performance group often has a much lar
contribution on the overall improvement. Therefore the sh
of the low performance group should reveal more inform
tion about the differences between the two treatments.

The low performance group consists of 9 questions w
LL, LM, and LH types of responses. In Fig. 3, we plot th
S–C shift of these 9 questions. The tutorial classes s
toward higher scores and concentrations and the final st
are mostly in the HH region. On the other hand, students
traditional classes have some improvement with their sco
and the final states are mostly in the MM region indicati
that a significant number of students still hold an incorr
model and may be in mixed model states.17

We can also study the details of student behavior in d
ferent concept groups. In Fig. 4, we plot the shift of t
questions in the force–motion group. The students beh
similarly to the low performance group except that the init
states are mostly in the LM and LH regions indicating
strong initial misconception. Again, after instruction, the t
torial classes had a large shift bringing the group aver
close to the HH region. The traditional classes only move
the bi-model region.

We often need to group all the student data together be
calculating the average score and concentration. Averag
over results for individual classes~with different sizes! can
be misleading and can even yield results outside the allo
, 27
Table V. Using the three-level coding scheme, we combined the pre-instructions FCI data from both tutorial and traditional classes~778 UMd students! and
identified the response types. The different categories of the student pre-instruction response types are shown.

Types LL LM LH ML MM MH HH

Questions 15, 24 5, 9, 18, 28 2, 13, 22 3, 7, 21, 26 6, 8, 11, 14, 17, 20, 23, 25 12, 16, 29 1, 4, 10, 19
S49001 L. Bao and E. F. Redish
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region. For example, averaging the two points~0, 1! and~1,
1! ~LH and HH! gives ~0.5, 1!, a value which is impossible
for a single group.

C. Analyzing the S– G plot

We can also useG to study the concentration of the inco
rect responses. The average results ofG for different perfor-
mance groups is calculated and listed in Table VII. We a
graph theS–G plot for all 29 FCI questions with pre- an
post-data in Fig. 5. From the data, we can see the interes
result that theG’s on low performance questions tend to

Fig. 2. TheS–C plot for all 29 FCI questions with pre- and post-data fro
both ~a! tutorial and~b! traditional classes.~UMd students!.

Table VI. Student pre-instruction responses on FCI questions related t
concepts of force–motion and Newton III~UMd students with data from
both tutorial and traditional classes combined!.

Force and motion Newton’s third law

Choice % Type Choice % Type

5-c 58% LM 2-a 66% LH
9-c 45% LM 11-d 43% MM

18-a 63% LM 13-c 68% LH
22-c 66% LH
28-d 51% LM
S50 Phys. Educ. Res., Am. J. Phys. Suppl., Vol. 69, No. 7, July 2
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higher than that of mid and high performance questions
dependent of the types of instructions and if the data
taken before or after instruction. Since highG’s indicate
strong distracters, it can be inferred that the low performa
questions on the FCI are dominated by situations where
dent responses have strong alternative models. After inst
tion the students giving incorrect responses are still stron
affected by the distracters of these questions.

One advantage of theS–G plot is thatG is not affected by
score. In Fig. 3 the concentration of student po
instructional data gets a much larger contribution from
scores and does not show much additional information.
the other hand, even with high scores, the student postG’s
are not affected by scores and are quite scattered just a
the results from pre-instruction data~see Fig. 5!. This implies
that the students giving incorrect responses~not necessarily
the same ones! behave rather similarly before and after i
struction. Therefore, using anS–G plot, we can get more
information on students’ giving incorrect answers than w
can be obtained with anS–C plot.

In Fig. 6, the results of the low performance questions
plotted with the shift vectors for all the questions displaye
This figure dramatically demonstrates that questions on
FCI on which students perform poorly are primarily que
tions on which our student population holds common alt

Fig. 3. S–C plot for 9 FCI questions~2, 5, 9, 13, 15, 18, 22, 24, 28! with
average pretest scores below 40%.

he
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native mental models. We also find that not only the aver
results, but also the shifts of individual questions in the l
performance group are similar except for questions 9 and
To understand this phenomenon, we analyze these two q
tions in detail. The student responses on FCI questions 9
22 are listed in Table VIII.

As we can see, for FCI question 9, the incorrect respon
of the students in tutorial classes are all significantly redu
after instruction. This results in aG similar to that of the
pre-instruction data. On the other hand, the incorrect
sponses of students with traditional instruction only have
nor changes except for a large drop on choice ‘‘b.’’ The
fore the post-data have a very highG with student response
concentrating on the main distracter~choice ‘‘c’’ !. The only
difference between choices ‘‘b’’ and ‘‘c’’ is that in choic

Fig. 4. S–C plot of 5 FCI questions~5, 9, 18, 22, 28! related to the force–
motion mental model.
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‘‘c’’ a ‘‘normal force’’ is included ~both ‘‘b’’ and ‘‘c’’ fol-
low the belief that there is a force in the direction of motion!.
This result indicates that after traditional instruction stude
are much improved on recognizing the ‘‘normal force
however, many of them still hold their initial belief that
force is needed in the direction of motion.

For FCI question 22, the data show only one major d
tracter~choice ‘‘b’’ !. The variations of student responses
other distracters are around 5%. Therefore in this questioG
depends mostly on the student response on the main
tracter. In the tutorial classes, when the student scores s

Fig. 5. S–G plot for all 29 FCI questions with pre- and post-data from bo
tutorial and traditional classes~UMd students!.
Post

.78
.31
Table VII. The average values of score andG for FCI questions in different performance groups defined based on pretest scores are calculated.

Tutorial Traditional

Overall Low Mid High Overall Low Mid High

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre

S 0.51 0.69 0.28 0.57 0.55 0.69 0.77 0.83 0.49 0.58 0.28 0.41 0.51 0.60 0.74 0
G 0.38 0.38 0.53 0.50 0.29 0.31 0.34 0.36 0.35 0.36 0.49 0.50 0.29 0.26 0.35 0
S51001 L. Bao and E. F. Redish
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a large pre–post improvement, the post-G is significantly
lower than the pre-G. Students with traditional instruction
have much less improvement and the post-G remains high.
On other questions, the pre- and post-G’s have similar val-
ues.

VI. DISCUSSION AND SUMMARY

The concentration factor can be used in many ways
both research and instruction. In research, we can use
facilitate the design of effective multiple-choice questio
that can be used to probe student conceptual understan

Fig. 6. S–G plot for 9 FCI questions~2, 5, 9, 13, 15, 18, 22, 24, 28! with
low average pretest scores~,40%!.
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In instruction, with a research-based multiple-choice test,
can use the concentration factor to evaluate student pe
mance and their modeling conditions.

A. Facilitating test development

In PER and education research in other areas, many
searchers are working to develop effective multiple-cho
tests in order to be able to evaluate and compare instruc
that is delivered to large populations. Useful multiple-cho
tests may be created in situations in which systematic
search on student understanding of the physics concepts
demonstrated the presence of common naı¨ve models in a
particular population. In this situation, distracters
multiple-choice questions can be designed to probe the
tribution of these models. Once a prototype is proposed
has to be tested and validated with further research. In
process, the concentration factor can be used to help fur
the development of the test in two ways.

1. A concentration analysis can help confirm the presenc
(and level) of erroneous models detected through
research

The design of a test usually starts with detailed stud
interviews where the incorrect student models can be ide
fied. Then we design the multiple-choice questions with d
tracters associated with these incorrect student models.
ing the concentration factor to analyze the results of the t
we can obtain quantitative evaluations and evidence
whether these distracters match well with the student mod
and/or if the student models detected in interviews are co
mon to a large population of students. If a distracter is eff
tive, we often observe a low score but highC and G with
students before instruction.

2. A concentration analysis allows one to detect items
where a relevant distracter may be missing or existing on
ineffective

When a question is designed appropriately, we usu
will observe an LH or LM type of response with pre-te
data. If the result shows an LL type of response, it indica
that the distracters are not attractive. This can be cause
three possible situations:

• None of the distracters reflects a common student mo
• For the context of the question, there does not exis

common student model
• All the choices correspond well with the student mode

and the students are using all the models equally.
Table VIII. Student responses on FCI questions 9 and 22 where the correct choice is shown in bold and the major distracter is italicized.

Question 9 22

Choice a b c d e G a b c d e G

Tutorial
Pre 0.07 0.17 0.47 0.27 0.01 0.40 0.03 0.06 0.67 0.24 0.01 0.76
Post 0.05 0.05 0.2 0.70 0.00 0.42 0.10 0.03 0.2 0.66 0.02 0.30

Traditional
Pre 0.06 0.27 0.42 0.24 0.02 0.29 0.01 0.05 0.66 0.27 0.01 0.81
Post 0.04 0.08 0.38 0.49 0.01 0.55 0.07 0.10 0.42 0.40 0.01 0.51
S52001 L. Bao and E. F. Redish
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When such situation happens, it often indicates that m
research is needed to further clarify the details involved.

3. A concentration analysis can help improve any
multiple-choice instrument

The concentration factor gives a way to automate the
lection of interesting items in any existing test. For examp
using anS–G plot, we can quickly scan many items an
select the ones that might be particularly interesting to lo
at in detail. Then we can conduct qualitative research
these interesting items to determine if the students have c
mon incorrect models and if the questions are detecting th
models. Then we can use the results to redesign the q
tions. Of course, if the test is to be effective, the first vers
must be based both on a good understanding of what is t
learned and on sound insights into student thinking, howe
obtained.

When we study student modeling, the questions should
carefully designed so that the distracters match the com
incorrect models. The number of choices in each questio
an important factor. A small number of choices can gene
large distortion on student responses. In addition, with
small number of choices~<3!, a multiple-choice question
becomes close to a true-or-false question. It is then
meaningful to use the concentration evaluation, since o
the score is known, the student incorrect responses are
obvious. We suggest that the number of choices for e
question should be no less than 5. This reduces the prob
ity that a student guessing at random will select a cho
corresponding to a known model.~See Ref. 4 for a more
extended discussion of this point.!

Furthermore, to keep consistency in calculating the c
centration factor, we recommend designing the question
that they all have the same number of choices. Howe
when the number of choices is large~.6!, small variations
~61! on the numbers of choices for different questions of
result in differences that can be tolerated.18

B. Facilitating instruction and assessment

In instruction, when we have a research-based test a
able, we can use the concentration factor to evaluate stu
performance and the effectiveness of instruction. Traditi
ally, student performance is evaluated with scores, wh
only give limited information on student understanding es
cially with low scores. The information on how the majori
of students get a question wrong cannot be analyzed u
scores alone. This information can be an important clue
instructors to help them improve their teaching.
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