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Probability plays a critical role in making sense of quantum physics, but most science and
engineering undergraduates have very little experience with the topic. A probabilistic interpretation
of a physical system, even at a classical level, is often completely new to them, and the relevant
fundamental concepts such as the probability distribution and probability density are rarely
understood. To address these difficulties and to help students build a model of how to think about
probability in physical systems, we have developed a set of hands-on tutorial activities appropriate
for use in a modern physics course for engineers. We discuss some student difficulties with
probability concepts and an instructional approach that uses a random picture metaphor and digital
video technology. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

A student’s first course in quantum physics can be qu
difficult. They have to think about phenomena for which th
have no direct personal experience, they have to follow lo
chains of inference from experiment to what appear to
bizarre conclusions, and they have to deal with phenom
that fundamentally involve probability. The latter concept
troduces a number of difficulties. Students of physics
rarely introduced to the use of probability in classical situ
tions early in their studies, even in places where it would
appropriate, such as error analysis or statistical mechanic
addition, studies of students understanding of probabili
ideas in cognitive psychology1 and mathematics education2

research indicate that serious misunderstandings are c
mon.

The Physics Education Research Group at the Univer
of Maryland has studied the difficulties students have
learning quantum physics. The purpose of this paper is
discuss the highlights of this research with an emphasis
its practical values to instruction. Our research was car
out in two venues: the third semester of our introducto
calculus-based engineering physics class~Physics 263!, and
an upper division one-semester course in quantum phy
for engineers~Physics 420!. The emphasis was mostly on th
latter course, and most of our curriculum development w
tested there. The 263 class is required of all enginee
majors. The 420 class is an upper division elective for en
neers so it is considerably smaller~15–30 students!. It is
dominated by electrical engineers~80–90 %! and is taught
every semester.

After years of experience in a seemingly determinis
world, reinforced by learning classical physics, students
develop a strong deterministic view of the physical world.
most classical situations discussed in introductory phy
classes, the behavior of a physical system can be prec
determined, and the emphasis is often on the constructio
a detailed description of the motion of an object.

In quantum mechanics, students have to use and inte
probabilistic representations that are very different from
deterministic ones they have become accustomed to thin
210 Am. J. Phys.70 ~3!, March 2002 http://ojps.aip.org/a
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of as physics. We first discuss the kinds of difficulties s
dents encounter with probability, including the gamble
fallacy3 and the difficulty with the idea of a probability den
sity. Then we consider instructional environments that c
help students understand the fundamental concepts of p
ability and learn to use a probabilistic representation to
terpret physical systems. To help students over the g
bridges are needed, and we make this bridging process
two steps.4 The first is to help students develop a basic u
derstanding of probability using contexts with which they a
familiar. The second is to use new metaphors, hands
analysis, and video tools to bring the students from an
derstanding of classical probability to an understanding
quantum probability.

II. STUDENT DIFFICULTIES IN UNDERSTANDING
PROBABILITY

Traditional instruction of quantum mechanics assumes
classical prerequisites such as the understanding of prob
ity and energy diagrams are readily accessible to stude
However, students often have much difficulty with the
prerequisites.5 Specifically, we wanted to learn if the studen
were able to decipher the meaning of the phrase probab
of locating a particle in a certain region. In general, mo
undergraduate students are familiar only with a kinemat
description of motion~a particle trajectory observed over
period of time!. They may find it difficult to comprehend
how a probabilistic representation relates to actual obse
tions and how the measurement can be used to cons
details of the particle’s behavior.

Our observations were conducted with students from t
classes of Physics 263~one in the fall semester of 1994 an
one in the spring semester of 1996! and two classes of Phys
ics 420~one each in the spring and fall semesters of 199!.
In the Physics 263 course, only the lecture section taugh
one of the authors~EFR! was studied. For the Physics 26
courses, the class of fall 1994 used only traditional lectu
and the class of spring 1996 used three quantum tutorials
addressed students’ difficulties on classical prerequisites
cluding classical probability.6 The Physics 420 class in th
210jp/ © 2002 American Association of Physics Teachers
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spring of 1998 used quantum tutorials on both classical p
requisites and quantum issues and the class in the fa
1998 was taught in a traditional fashion as a control by me
bers of the department not participating in the research. M
of the instructional innovation used a tutorial format. Tuto
als are a type of guided group-learning instruction develo
by Lillian C. McDermott and co-workers at the University o
Washington.7 The quantum tutorials were developed using
similar format.

The instruments used in this study to probe student th
ing include two concept quizzes, one exam question,
student interviews.~The quiz and exam questions are giv
in the Appendix.! Question A were designed to probe st
dents understanding of some fundamental ideas in prob
ity including the independence of events and the gambl
fallacy. These problems were given at the beginning of
Physics 420 class to collect information on students ini
understanding. Question B was designed to probe whe
the students understand the different shapes of the w
function of bound states and if they could make the li
between the amplitude of the wave function and the pr
ability density of a particle being in certain region. The que
tion also gave information on student understanding of
potential well. This question was given to the two Phys
263 classes after instruction.

Question C probes students understanding of probabil
interpretations of both classical systems and quantum
tems. This question was used in the final exam of the Phy
263 class in spring 1996.

A total of 16 individual interviews were conducted wit
students from the Physics 263 and 420 classes to invest
students understanding of the classical prerequisites. The
of the interview relating to probability was based on t
same issues as probed by the quiz problems but with a m
open-ended style. In the following, we briefly summarize o
observations.

Predictability and the stochastic nature of probability:In
the five interviews conducted with the Physics 263 stude
after instruction, we found that four of the students held
deterministic, empirical intuition of probability.~The five
students all received a grade of A and are not representa
of the overall population.! Their descriptions show an incor
rect understanding of the difference between the stocha
nature of any single observation and the determined expe
distribution of the results of ensemble observations. Th
students bring with them the belief that small samples w
replicate the probabilistic trends expected from a very la
number of trials and that the specific result of any sin
measurement can be affected by the previous sequenc
outcomes.8 For example, one of the students responded to
first part of question A withsince you already have thre
heads in a row, you should have more chances to get a
on the fourth time.

A quantitative study of the students in the advanced c
~Physics 420 with 18 students! in the spring of 1998 shows
similar results. We used an open-ended survey with a p
lem about a coin-flipping experiment~see Appendix, ques
tion A.1!. A majority of the students showed the gamble
fallacy: 61% thought that the result of a single coin-flippi
event depends on the results of previous coin-flipping ac
ity. In addition, 27% of the students thought that if the co
were flipped 100 times, there would be an exact 50/50
tribution for heads and tails. The last part of question A co
cerns probable values of students SAT scores and also d
211 Am. J. Phys., Vol. 70, No. 3, March 2002
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with the same issue. In this case more than 67% of the
dents thought that knowing one student’s score would af
the probable average score of the other students.

Understanding probabilistic representations:None of the
students who visited during our office hours or participa
in interviews reported having had any experience~before in-
struction! using a probabilistic interpretation to think about
physical system. A very small number of them had the i
pression of doing some kind of probability analysis in a ma
class, but did not remember any details of the mathema
None had used probability to describe a real physical ev

In the physics 263 class of fall 1994, we gave question
in a quiz after instruction in quantum mechanics. After t
students were given the wave function and asked to de
mine where in the potential well the electron would mo
likely be found, most of them did not use the correct spa
dimension,x, in their reasoning. The largest fraction, 40%
left the question blank; 36% used the vertical dimension,V,
as a spatial dimension for position.9 ~As suggested by inter
view results, many of these students appeared to cons
that electrons with different energy states would also be
different places on the vertical dimension in the poten
well.! Only 9% of the class used the correct dimension a
among them, only one student came up with the correct
swer. Among all the students, only 11% gave some kind
reasoning for their answers.

III. UNDERSTANDING PROBABILITY WITH
CLASSICAL SYSTEMS

The role of probability in microscopic systems is conce
tually quite subtle. For most of the traditional experiments
quantum physics, it is not possible to set up an individ
quantum object, for example, an atom, molecule, or nucle
and probe it repeatedly.10 Instead, an ensemble of identical
prepared objects is probed and the ensemble average is
tified with the quantum average. Thus, in an (e,2e) experi-
ment, thousands of electrons knock electrons out of th
sands of different atoms or molecules, and for ea
individual case, the target electrons momenta before the
lision are determined by momentum conservation. The re
is interpreted as the probability distribution of finding
given momentum in a single atom or molecule.11 Thus we
note thateven if the fundamental mechanics of atoms a
molecules were classical, we would still need to describe
most experiments with atoms using probabilities. This f
allows us to build a bridge to the use of probability in cla
sical situations.

We introduce a metaphor, therandom picture, as a funda-
mental tool for students to construct a probabilistic repres
tation. Because atoms cannot be tracked or controlled i
vidually, we ask students to consider a set of oscillat
objects whose phases are random. We then ask the stu
to imagine taking a series of flash photographs of a sin
moving classical object at random times and using th
photographs to predict where the object is most likely to
found. Based on this notion, hands-on activities and disc
sion questions were developed and used in tutorials wh
the students can apply this random picture metaphor to a
lyze real physical systems such as a cart moving back
forth on an air track.

Building the probability density function:Consider a
simple classical system with periodic motion such as a p
dulum bob swinging back and forth. The traditional approa
211L. Bao and E. F. Redish
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in classical mechanics is to think about the motion of
bob, the force on the bob during the motion, the velocity~or
position! versus time relation, etc. Such approaches enc
age students to focus on the motion of the objects, wh
encourages a deterministic view of physical systems.

Another way to analyze this system is to think about
probabilistic aspects. For example, if one does not kn
when the motion of the bob started, its position at an a
trary time is uncertain. But one can still predict the probab
ity of finding the bob in certain regions, even though t
exact position–time relation of the bob is unknown. Figure
is a time-exposure photograph of a white pendulum b
swinging against a black background. The brightness o
particular area is a relative measure of the amount of t
that the bob spends in the corresponding region. It there
reflects the distribution of the probability density for the b
to be found at different areas.

The time-exposure photograph produces a continuous
tribution function for the probability density. We can use t
random picture idea to generate discrete measurements
reflect the probability density distribution. With a large num
ber of random pictures, the probability density distributi
can be reconstructed with acceptable accuracy. In our
structional experiment with this metaphor, we found th
most students could easily accept and interpret this typ
probabilistic representation.12

In practice, we first help the students understand that
motion is periodic. Thus for the continuous case, we be
with the idea that the probability of finding the object in
small regionDx is proportional toDt, the time that the ob-
ject spends inDx. WhenDx is small and the velocity of the
object does not change rapidly withinDx, Dt can be ap-
proximated by

Dt5U Dx

v~x!
U, ~1!

whereDx represents a region defined by the interval (x1 ,x2)
and equalsx2–x1 . The quantity,v(x), is the average veloc
ity of the object in the interval (x1 ,x2), wherex is taken to
be the center position of (x1 ,x2). We useP(x,Dx) to repre-
sent the probability for the bob to be inDx and denote the
period of the motion byT. Because the object will pas
through the region twice in one period, the total time spen
Dx has a factor of 2. ThenP(x,Dx) can be obtained from

P~x,Dx!52
Dt~x,Dx!

T
5

2

T U Dx

v~x!
U. ~2!

The first part of Eq.~2! is the core conceptual equation th
allows students to make sense of the meaning of the p
ability. The second part of Eq.~2! provides a mechanism fo
calculating the result, using energy conservation to fi
v(x). If we define r(x) as the probability density, wher
P(x,Dx)5r(x)•Dx, thenr(x) can be calculated from

Fig. 1. Time exposure photo of a white pendulum bob swinging again
black background.
212 Am. J. Phys., Vol. 70, No. 3, March 2002
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r~x!5 lim
Dx→0

P~x,Dx!

uDxu
5

2

Tuv~x!u
. ~3!

The normalization condition can be written as

R r~x!dx5E
0

T dt

T
52E

0

T/2 dt

T
5

2

T E
0

Ldx

v
51. ~4!

At certain positions the velocity may become zero, mak
r(x) go to infinity at that point. But typically the singularity
is integrable and the probability in the small region abo
that point is finite. This problem can be a good exercise
advanced students.

With the random picture method, the probabilityP(x,Dx)
can be estimated by counting the number of pictures show
the object inDx. Denote this number bym(x,Dx) and letN
represent the total number of pictures in the experiment.~It is
necessary to haveN large.! Then, the probability of finding
an object in regionDx can be obtained from

P~x,Dx!5 lim
N→`

m~x,Dx!

N
. ~5!

From the definition of the probability density, we obtain

r~x!5 lim
Dx→0

P~x,Dx!

Dx
5 lim

Dx→0

m~x,Dx!

NDx
, ~6!

which also satisfies the normalization condition

R r~x!dx5(
m~x,Dx!

N
5

N

N
51. ~7!

It is assumed that different regions ofDx do not overlap.
Using digital video to find probability distribution—a

pseudorandom method:Implementing a real experiment us
ing the random picture method requires expensive hardw
In addition, the students need to learn how to handle
equipment, and the time required could be a large overh
distracting them from learning the real physics. An altern
tive way that we find suitable for lab and tutorial settings
to make a digital video of a working physical system
advance. Then in the class, the students can work on
digital videos with apseudorandommethod, picking random
frames from the video as if they are taking random pictu
of the real system. Here we discuss a simple example
show how this method works in practice.

The experiment is illustrated in Fig. 2. A glider on an a
track is attached to two identical springs and is set to os
late along the track. The motion of the glider is videotap
and digitized. Because the damping is small, we can ob
several complete cycles without noticeable changes in
amplitude of the oscillation.

From the video, we obtain a series of frames showing
position of the glider at different instants of time. Becau
the video is captured with a fixed rate of 30 frames per s
ond ~fps!, the time interval between consecutive frames i

a
Fig. 2. A glider on an air track in harmonic oscillation.
212L. Bao and E. F. Redish
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constant equal to 1/30 s. The videos were made to incl
exactly one complete period of motion. Thus taking a pict
at some random timet r can be approximated by taking
picture at some timet in one period. Thist can be calculated
from

t5~ t r moduloT!. ~8!

In our experiment, the period of the oscillating glider
about 2 s, which gives a total of 60 frames. Each frame
labeled with a numbern (n50 – 59) and tagged by a tim
tn , which represents the time relative to the beginning of
video. Then we can write

tn5n 1
30 . ~9!

Next we construct a table containing a full set of frames
one complete period~see Table I!. Suppose a student takes
picture at a random timet r . One can use Eq.~8! to get t.
Then tn can be matched~from Table I! by finding a value
closest tot. The video frame associated with the matchedtn

is picked as the picture taken by the student at timet r . This
process is illustrated in Fig. 3. Obviously the outcome is
the real random picture that the student would get att r , but
it is a reasonable approximation. Using a high-speed cam
one can increase the frame rate and improve the accu
accordingly. For the glider experiment, the frame rate of
fps is enough for good results.

The position of the cart in each frame can be easily fou
with video analysis software such asVideoPoint™. By
choosing a large number of random frames (N;1000), we
can construct a data set for the positions of the cart at dif
ent random times. An Excel spreadsheet is developed u
the internal Visual Basic functions to process the data.13 In
the tutorial, the students work withVideoPoint™ to get the
position of the cart in each frame and import the data to
Excel spreadsheet.

In the spreadsheet, the total range of the motion is divi
into eight small regions with a fixed length ofDx, which has
to be set larger than the maximum difference of positions
the glider between consecutive frames to make a more

Fig. 3. The process of using the pseudo-random method to take ran
pictures.

Table I. Enumeration of frames for a complete period wheretn5n•
1

30; xn is
determined by the position of the cart innth frame.

Frames (n) tn(s) xn

0 t0 x0

1 t1 x1

2 t2 x2

] ] ]

59 t59 x59
213 Am. J. Phys., Vol. 70, No. 3, March 2002
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form distribution and to avoid zero counts. After calculatin
the positions of the glider in all the pseudorandom pictur
the spreadsheet does a frequency count of the frames
have the position of the glider in each of the eight regio
The counted number is proportional to the probability
finding the glider inside the corresponding region and
probability density is obtained with Eq.~6!. A typical plot of
the calculated probability distribution is shown in Fig.
Smoother graphs can be obtained by using videos wit
higher frame rate, which can reduce the error of the pseu
random method and allows smaller values ofDx. LargerN
can reduce the variance of the calculation.

For a harmonic oscillator, the analytical form of the pro
ability density function can be easily found using Eq.~2! and
energy conservation, which gives

r~x!5
1

pAA22x2
, ~10!

whereA is the amplitude of the oscillation.
In the tutorial implemented in Physics 420, students

guided to derive Eq.~10! and compare it with the result
obtained using the random picture idea. With the student
the Physics 263 class~spring 1996!, the tutorial was simpli-
fied to focus on qualitative discussions of the random pict
idea using the computer-generated results.

Tutorial activities: To help students develop a corre
understanding, several experiments with simple o

m

Fig. 4. The probability distribution of a glider in harmonic oscillation, cr
ated by a computer using the pseudo-random picture method. The pl
value represents the actual probability for the glider to be found in the e
of the eight regions. The dashed line represents the theoretical curve.

Fig. 5. An experiment with balls rolling on a stepped track.
213L. Bao and E. F. Redish
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263
dimensional systems were developed to use in a tutorial
ting. The tutorial begins with systems of constant speed
progresses to more complicated systems such as the osc
ing glider which has changing velocities. With these acti
ties, students explore several key issues including the c
cept of probability density, relations between probability a
probability density, mathematical formulation of probabili
density with simple classical systems, and normalization
the following, we briefly describe two of the activities use
in this tutorial.

~1! Balls rolling down a stepped track. A two-step track
with sections of equal length is built as shown in Fig. 5.
series of balls with equal separation are set rolling towa
the right with a very small initial velocityv0 . The distance
between the balls~denoted byd! is adjusted such that whe
a ball falls off the right edge of the track, the next ball ente
the left side of the track.14 In this way only one ball is on the
track at any time, thus creating a pseudoperiodic motion
the two lower segments of the track with a period,T, which
equals the time that a ball takes to roll over the two low
steps. By choosingv0 to be small, we can ignore the initia
kinetic energy and simplify the calculation.

In the tutorial, we demonstrate the pseudoperiodic mot
using a real setup and let the students play with it to
hands-on experience. The two equal steps of the track
vide a straightforward example for the students to anal
the relation between probability and two different but co
stant velocities.

~2! A classical potential well. In the second experimen
we use the glider and the air track. This time, spring bump
are attached to the glider and the two ends of the air trac
produce elastic collisions at both ends~see Fig. 6!. The po-
tential energy of the glider is constant between the bump
and rises quickly at the two ends like a deep square wel

IV. EVALUATION OF THE CURRICULUM

In the Physics 263 class of spring 1996, we implemente
tutorial that used the random picture metaphor with the c

Fig. 6. An experiment showing a classical potential well.
214 Am. J. Phys., Vol. 70, No. 3, March 2002
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see if the new instruction improved students understand
of probability, the Question B was given to the students
the class after they did the tutorial. The results from both
fall 1994 class and spring 1996 classes are shown in Tabl
From the data, we can see that after the tutorial, 30% of
students usedx as the spatial dimension to represent t
position of the electron, whereas in the class without
tutorial only 9% of the students used the correct spatial
mension. The data also shows that 27% of the students c
relate the probability of finding the electron in certain r
gions to the velocity of the electron. Although they are usi
a classical argument, we consider this result encourag
compared to the situation of the class in fall 1994 where f
could come up with any type of reasoning about probabil
We also find 33% of the students in the spring 1996 cl
attempted to explain their reasoning and most of them u
velocity and energy. In fall 1994, only 11% of the studen
attempted some kind of reasoning and few made any sen
terms of physics.

On the final exam for the class in the spring of 1996,
gave students a multiple-choice multiple-response~MCMR!
question~Question C in the Appendix!. Students response
on this question~Table III! also show encouraging result
42% of the students could answer both the quantum and
classical part of the questions with no incorrect answers.
cause it is a MCMR question, the number of students giv
partially correct answers is much higher—around 80%. T
results with the MCMR question suggest that the stude
who did not give perfect answers were in a mixed sta
which is considered as a typical intermediate stage towar
favorable concept change.15–17

In the Physics 420 class of spring 1998, the three activi

Table III. Students responses on the question in final exam of Physics
class in spring 1996~question C in Appendix!.

Student response
Classical

part
Quantum

part

Students picked all correct
choices

58% 69%

Students picked correct
choices and also some
incorrect choices

81% 84%

Students answered both parts
with all correct answers

42%
tudents
Table II. Physics 263 class students responses on conceptual quiz~question B in Appendix!.

Types of student responses Fall 94 Spring 96

Use energy levels/states~vertical dimension! to describe the
position of an electron in a potential well~incorrect!

36% 27%

Usex ~horizontal dimension! to describe the position of an
electron in a potential well~correct!

9% 30%

Others 15% 14%
Blank 40% 29%

Implied student reasoning Fall 94 Spring 96

Use velocity for reasoning of probability 0% 27%
Give reasoning~including correct and incorrect ones!a 11% 33%

aThe reasoning of fall 94 students is mostly based on irrelevant issues. The reasoning of the spring 96 s
is based on energy and velocity in a classical sense.
214L. Bao and E. F. Redish
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were integrated into two tutorials and students received m
emphasis on the mathematical formulations of the proba
ity density function in lecture. The class of fall 1998 w
taught with traditional lectures only. For each of the tw
classes, we interviewed students after instruction~the class
size is 15 to 20 students!. The six students we interviewed i
spring 1998 all used the random picture metaphor very
ently in their reasoning and could apply this idea to thi
about measurement of real physical systems. Three of t
also gave a correct interpretation of quantum probability.
contrast, from the five students we interviewed in fall 199
only one gave the correct quantum interpretation. The o
four students failed to put together a reasonable mental
ture for the probabilistic representation. Two of them cou
not give any reasoning at all; the other two students tried
provide some kind of reasoning, but failed to recognize c
tain crucial pieces such as the correct spatial dimension
the connection between quantum probability and the m
surement of a real physical system.

V. CONCLUSION

It is well known that quantum physics has many difficu
conceptual dualities waves and particles, position and
mentum, the quantum character of small systems, and
classical limit. What is not always appreciated is that
teaching of quantum physics also contains instructional
alities that do not always appear in classical physics.

Quantum physics builds on a classical base, using m
classical concepts and representations. If student unders
ing is weak in these areas, the learning of quantum phy
may be difficult. However, strengthening this classical b
can increase the likelihood that students will attempt to ap
classical reasoning to quantum situations. For example
Sec. IV, we discussed the results of interviews with stude
from a class that used tutorials on classical probability.
found that three of the six students were able to develop
appropriate understanding of quantum probability, but
remaining students used classical arguments in their rea
ing and tried to associate the probability of finding an el
tron in a potential well with the velocity of the electron. O
the other hand, among the five students we interviewed f
the class without tutorials, four of them failed to provide a
coherent explanation~not even a classical one!.

We want our students to see physics as building a cohe
and consistent representation of the physical world. Be
exposed to quantum dualities can undermine student vi
that physics is consistent and makes sense. When we
the Maryland Physics Expectations Survey to students
Physics 263 after they had four weeks of instruction on
troductory quantum mechanics, we observed an unfavor
shift of students views on the structure of their phys
knowledge, where students appeared to view physics
collection of isolated pieces rather than a coherent system
knowledge. Written comments indicated that quantum ph
ics was the reason.

We want our students to learn to use mathematics a
representation of physics and to build their intuition and c
ceptual understanding into their equations. In quantum ph
ics, the difficulty in building physical intuition tends to lea
students to think that quantum physics is just math and
the physical principles that lead us to choose the mathem
ics we use. In the Physics 263 final exam, about 1/4 of
students said that if a particular frequency failed to prod
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photoelectrons, any change to the cathode would resu
photoelectrons because ifeV05h f—f gave zero before,
changingf will make it no longer zero. They focused on th
math, failing to take into account the physical conditio
~that the right-hand side must first be positive! which must
be met before the equation can be applied.

We have discussed one issue necessary for the stud
quantum physics: probability. There is an interaction w
other issues such as reading potential energy diagrams
understanding and interpreting wave functions, which
have also studied but did not discuss here. Our research
firms that students often have difficulties in understand
basic issues of probability. In our calculus-based mod
physics course, most students had never used a probabi
representation to describe a physical system and they o
held a strong deterministic view on physics phenomenon
address these issues, we developed a random picture m
phor to help them build a mental bridge to the idea of pro
ability and we developed tutorials using hands-on activit
with classical systems. Our approach has helped, but re
sents only a first step. In classes with traditional instructi
most students were found to be confused by many of
basic ideas related to probability even after instruction.
such cases, students often misinterpret the wave functio
the trajectory or the energy of the object. The students
ceiving tutorials developed a better understanding of iss
related to probability and of those interviewed, most show
the ability to reason with and interpret probability densitie
After instruction with tutorials, many students develop
correct qualitative reasoning for probabilistic interpretatio
of classical systems and were able to use a correct un
standing of probability density and the physical meaning
normalization.
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APPENDIX

Question A

Conceptual quiz on probability

~1! Consider the following coin tossing experiments:
Suppose you tossed a coin three times and get th
heads in a row. Is the probability of getting a head on
next toss greater than, less than, or equal to 50%?
plain your reasoning.
If you toss a coin one hundred times, what do you exp
to happen? If you toss it another one hundred times,
you expect to get the same number of heads and ta
Explain your reasoning.

~2! Suppose the student average SAT score at Enorm
State University is 1000. Your friend is in a writing clas
of 10 students. Her score was 1100. What is the m
215L. Bao and E. F. Redish
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probable average of the other 9 students? Explain y
reasoning.

Question B

Conceptual quiz given in Physics 263 classes at
University of Maryland in fall 1994 and spring 1996

Question C

Exam question on quantum wave function given to
Physics 263 class in fall 1996

The figure below is a plot of a one-dimensional poten
energy functionU@x# ~lower plot! and the wave function
~upper plot! of an eigenstate for an electron in the influen
of that potential. The energy,E, associated with that state
also shown on the energy plot. Distances are measure
nanometers and energies in eV.

The potential energyU@x# is defined so that it has four va
ues in five regions of thex axis:
Region I: x,21 U@x#50
Region II: 21,x,20.5 U@x#5230
Region III: 20.5,x,10.5 U@x#5215
Region IV: 10.5,x,11 U@x#526
Region V: 1,x U@x#50.

~1.1! If the particle were moving classically~i.e., its mo-
tion were described by Newton’s laws! in the potentialU@x#,
216 Am. J. Phys., Vol. 70, No. 3, March 2002
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and it had an energyE, which of the following statements
would be true? List all that apply.

~a! It would move the fastest when it was in region II.
~b! It would move the fastest when it was in region III.
~c! If we took a photograph of the particle at a rando

time, we would never find it in region IV.
~d! If we took a photograph of the particle at a rando

time, we would be most likely to find it in region II.
~e! If we took a photograph of the particle at a rando

time, we would be most likely to find it in region III.

~1.2! If the particle were moving quantum mechanica
~i.e., its motion were described by the Schr dinger equati!
in the potentialU@x#, and it had an energyE, which of the
following statements would be true? List all that apply.

~a! If we measured the position of the particle at a rand
time, we would never find it in region I.

~b! If we measured the position of the particle at a rand
time, we would never find it in region IV.

~c! If we measured the position of the particle at a rand
time, we would most likely find it in region II.

~d! If we measured the position of the particle at a rand
time, we would most likely find it in region III.

~e! The state shown represents the lowest energy state
can be found in this well.
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GORDON CONFERENCE ON PHYSICS RESEARCH AND EDUCATION:
QUANTUM MECHANICS

The 2002 Gordon Conference on Physics Research and Education will focus on quantum
mechanics and will be held on June 9–14, 2002 at Mount Holyoke College, South Hadley,
Massachusetts. The goal of the conference is to bring together researchers who study and apply
quantum mechanics, physics education researchers, and college and university level instructors of
quantum mechanics for the purpose of promoting innovation in all aspects of teaching quantum
mechanics throughout the undergraduate curriculum. The conference will include sessions and
discussions about the desired content and outcome of courses, curriculum development using
research on student understanding of topics in quantum mechanics, ways of approaching non-
intuitive aspects of quantum theory, and the results of current research in physics that can be used
to increase undergraduate student understanding of the concepts and applications of quantum
mechanics. More information can be found at http://www.grc.uri.edu/programs/2002/physres.htm.
Questions or suggestions about the Gordon Conference can be addressed to the organizers, Beth
Ann Thacker ~batcam@spudhammer.phys.ttu.edu!, Harvey Leff ~hsleff@csupomona.edu!, or
David Jackson~jacksond@dickinson.edu!.
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