
PHYSICS EDUCATION RESEARCH

All submissions to PERS should be sent �preferably electronically� to the Editorial Office of AJP, and
then they will be forwarded to the PERS editor for consideration.

Theoretical comparisons of average normalized gain calculations
Lei Baoa�

Department of Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, Ohio 43210

�Received 13 October 2004; accepted 19 May 2006�

Since its introduction, the normalized gain or the g-factor has been widely used in assessing
students’ performance in pre- and post-tests. The average g-factor can be calculated using either the
average scores of the class or individual student’s scores. In general, these two calculations produce
different results. The nature of these two results is explored for several idealized situations. The
results suggest that we may be able to utilize the difference between the two results to extract
information on how the population may have changed as a result of instruction. © 2006 American
Association of Physics Teachers.
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I. INTRODUCTION

Pre- and post-test analyses have been widely used as a
method of assessment in education and social science. Re-
searchers have developed a variety of tools to perform such
analysis.1,2 Some 30 years ago, Frank Gery3 proposed a gap-
closing measure as the dependent variable for studies of edu-
cational methods,

g =
Posttest Score − Pretest Score

Maximum Score − Pretest Score
. �1�

In the physics education community, this gap-closing mea-
sure is most commonly associated with the work of Richard
Hake and is known as the normalized gain.4,5

The three test scores �maximum, post-test, and pre-test�
could be defined for an individual student or as an average
measure for a population. The average g assigned to a group
of students can be determined by averaging the g for each
student in the group. Alternatively, the average g for a group
can be obtained by applying Eq. �1� to the average scores for
the group. In practice, the two methods usually give very
similar results for classes of 50 students or more, but the
results from these two methods can sometimes yield different
outcomes.

There has been little discussion of how the results of these
two methods of calculating the average value of g can differ
and if any useful information can be inferred from differ-
ences when they arise. There are also more fundamental is-
sues such as the underlying cognitive models and the mea-
surement uncertainties of the gap-closing measure.6,7

Although researchers still question the models underlying the
normalized gain �often called the g-factor�, it is useful to
consider the mathematical characteristics of this measure.
The focus of this paper is the theoretical relation between the
two types of average g calculations for several idealized situ-

ations.
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II. MATHEMATICAL FEATURES OF A MODIFIED
g-FACTOR

We denote the ratio of the number of correct answers to
the total number of questions on the pre-test by x and call
this ratio the “pre-test score.” We denote this ratio on the
post-test by y and call it the “post-test score.” The scores can
be the scores of an individual student or the average scores
of a group of students. In theory, we can treat x and y as two
independent variables. The definition of g in Eq. �1� is the
ratio of a student’s or a class’ score change to the maximum
possible score change. Typically, such changes are positive,
but students and/or classes sometimes have negative score
changes. To have a consistent definition of g for both posi-
tive and negative score changes, we will use a definition first
introduced by Marx and Cummings,8

g�x,y� = �
y − x

1 − x
� 0 �y � x�

y − x

x
� 0 �y � x� � . �2�

The values at the two undetermined �singular� points at x
=0 and x=1 are defined by forcing y to equal x.

g�x,y� = �1 �y = x = 1�
0 �y = x = 0� � . �3�

In the three-dimensional space spanned by x, y, and g, g
represents a surface �see Fig. 1�. For a given x, the g-factor
increases linearly with y except for the discontinuity at x
=y. In the positive branch, the slope becomes larger as x
increases, while in the negative branch the slope becomes
larger as x decreases. Figure 2 shows the y-g relation at
different values of x. From Eq. �2�, we see that g can be
considered to be a scaled measure of the absolute score
change �y−x�, i.e., a fixed value of �y−x� will produce dif-
ferent values of g for different values of x.

The relation between g and x at constant values of y and

�y−x� is shown in Figs. 3 and 4 along with the scatter plots
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of the data of a class. We can clearly see each student’s
pre-test score, post-test score, absolute score change, and
normalized gain. This type of overlaid scatter plot can help
researchers quickly see possible issues in the data such as
“ceiling effects” and identify interesting clusters of students
�for example, the students with negative gains�. Depending
on the emphasis of a particular analysis, we can use different
types of scatter plots �for example, y versus x� and back-
ground curves to show relations among different variables.

III. TWO METHODS OF CALCULATING THE
AVERAGE g-FACTOR

Consider a class of N students. We denote the average
score of the class on the pre-test by x̄, the post-test average
score by ȳ, and the gain calculated using these average

Fig. 1. g�x ,y� represents a 3D surface in the space spanned by x, y, and g.

Fig. 2. With a fixed pre-test score, g changes linearly with respect to y and

the slope is determined by the value of x.
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scores by g. We represent the pre and post scores of the kth
student in the class by xk and yk, and the student’s individual
gain by gk. The average gain calculated using the average of

Fig. 3. The relation between g and x at constant values of post-test scores.
The scatter plot represents data from a calculus-based introductory physics
class at The Ohio State University �N=105�.

Fig. 4. The relation between g and x at constant values of absolute score

changes. The scatter plot is from the same data shown in Fig. 3.
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these individual gains is denoted by ḡ. These two methods of
calculating the average value of g are described by Eqs. �4�
and �5�.

g =
ȳ − x̄

1 − x̄
=

1

N
	


k=1

N

yk − 

k=1

N

xk�
1 −

1

N


k=1

N

xk

=



k=1

N

�yk − xk�



k=1

N

�1 − xk�

. �4�

ḡ =
1

N


k=1

N

gk =
1

N


k=1

N
�yk − xk�
�1 − xk�

. �5�

Note that only the positive branch �ȳ� x̄� of Eq. �2� is
considered. That is, our discussion is valid only for the Hake
definition of gain, Eq. �1�, if each student scores higher on
the post-test than he or she did on the pre-test.

It is easy to see from Eqs. �4� and �5� that when individual
students have similar pre-test scores, that is, xk� x̄, we can
write 
k=1

N �1−xk��N�1− x̄�, which leads to g� ḡ. This result
is trivial, is unusual for real groups of students, and has no
implications for reasoning in the reverse direction. That is,
when the two methods give identical results, the cause of
such an outcome is not necessarily that all students have
similar pre-test scores.

Equations �4� and �5� show that ḡ and g are different in
general, and the difference depends on the distribution of pre
and post scores. It is interesting to see how this difference is
related to certain features of the population and if such rela-
tions can be used in assessment.

IV. DIFFERENCES BETWEEN ḡ AND g FOR
IDEALIZED SITUATIONS

To explore how differences between ḡ and g may arise
from specific characteristics of the population, we consider a
few idealized situations. The population is assumed to have a
normal distribution and all gains are assumed to be positive.
Although it is most unlikely for any of these idealized situ-
ations to occur in real classrooms, the results based on these
conditions may help researchers interpret actual data.

Suppose that a class is given a pre-test and a post-test and
that the data are “matched”—all students have taken both
tests. Consider the case in which students with below aver-
age pre-test scores have below average post-test scores and
students with above average pre-test scores have above av-
erage post-test scores; that is, all students remain on the same
side of the class score distribution curve �with respect to the
average class score� before and after instruction. We refer to
this type of situation as a normal shift. Several cases may
occur in a normal shift.

Constant shift. In this case it is assumed that all the stu-
dents in the class have the same score change, which would
equal the shift of the class average scores. The pre and post
score distributions should also have identical shapes. Denote
the change of the class average scores by �0 ��0= ȳ− x̄� and
let ḡ0 represent the average of the individual student’s nor-
malized gains. The class gain calculated by the class’ average
scores is still represented by g, which, by using the positive
branch of Eq. �2�, is g=�0 / �1− x̄�.

Because the class score distribution is symmetric and each

student has the same score change, we can identify students
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from the class score distribution in symmetrical pairs with
respect to the class average. That is, if one or several stu-
dents has a score of �x̄−�p�, an equal number of students will
have a score of �x̄+�p�. Here we let �p�xp− x̄�, which rep-
resents the difference between the pth student pair’s score
and the class average �see Fig. 5�. Now consider the pth pair
of students with pre-test scores of �x̄−�p� and �x̄+�p�, re-
spectively. The average gain of the two students, ḡ0,p, is
given by

ḡ0,p =
1

2
	 �0

�1 − x̄ + �p�
+

�0

�1 − x̄ − �p�
�

=
�0

�1 − x̄� − �p
2/�1 − x̄�

, �6�

which gives

ḡ0,p =
�0

�1 − x̄� − �p
2/�1 − x̄�

�
�0

�1 − x̄�
= g . �7�

Then the average gain of the class, ḡ0, is

ḡ0 =
2

N


p=1

N/2
�0

�1 − x̄� − �p
2/�1 − x̄�

. �8�

Obviously, ḡ0�g. Equation �8� also indicates that if a con-
stant shift occurs and many students have large values of �p
�which implies a large standard deviation of the class score
distribution �x� and/or if the class has a large x̄, the differ-
ence between ḡ0 and g will increase. In this case if we cal-
culate the correlation between the individual student’s nor-
malized gains and the pre-test scores, a positive correlation is
expected because the students with low pre-test scores will
have low individual gains due to the scaling shown in Fig. 2.
�Note that all students have the same absolute score
changes.�

Expansion. In this case, we assume that students with
above average pre-test scores have larger score changes than
students with below average pre-test scores. Here, the post-
test score distribution will be flatter than the pre-test score
distribution, �y ��x. To simplify the calculation, we further
assume that a student’s score change is linearly related to the
difference between the student’s pre-test score and the class
average of the pre-test score. Thus, the post-test score distri-
bution is again symmetrical, and we can identify symmetri-
cal student pairs �see Fig. 6 for definitions of the variables

Fig. 5. A class going through a Normal Translation process—all students
have the same absolute score change, which is denoted with �0.
for the student pair�.
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Denote ḡE as the average of the individual student gains
under expansion. For the pth pair of students, ḡE,p can be
calculated by

ḡE,p =
1

2
	 �p1

�1 − x̄ + �p�
+

�p2

�1 − x̄ − �p�
� , �9�

where

�p2 � �p1 and �0 = �p0 =
�p1 + �p2

2
. �10�

Denote �p as the absolute value of the difference between �0
and the pth pair of students’ score changes. Then we can
write

�p1 = �0 − �p and �p2 = �0 + �p. �11�

With the additional assumption that no student has a perfect
pre- or post-test score, we can rewrite Eq. �9� as Eq. �12�.
The relation will hold as long as �1− x̄���p.

ḡE,p =
�0

�1 − x̄� − �p
2/�1 − x̄�

+
�p · �p

�1 − x̄�2 − �p
2 � ḡ0,p � g .

�12�

Therefore, we can obtain the relation

ḡE � ḡ0 � g . �13�

If we calculate the correlation between the individual stu-
dent’s normalized gains and the pre-test scores for a class
that undergoes expansion, a larger �compare to constant
shift� positive correlation can be expected.

Contraction. This case assumes that the students with
above average pre-test scores have smaller score changes
than the students with below average pre-test scores, but all
students still remain on the same side of the distribution
curves of the pre- and post- tests. Denote the average gain by
ḡC. Then the post-test’s score distribution will be sharper
than that of the pre-test, �y ��x. To simplify the calculation,
we further assume that a student’s absolute score change is
proportional to the difference between the student’s pre-test
score and the class average of the pre-test scores. Therefore,
the post-test score distribution is symmetrical, and we can
identify symmetric student pairs �see Fig. 7 for definitions of
the variables for the student pair�. Note that �p= ��0−�p1�
= ��0−�p2�. In this case we have

�p2 � �p1. �14�

Fig. 6. A class going through a Normal Expansion process—students with
low pre-test scores achieve smaller absolute score improvement than stu-
dents with high pre-test scores.
Similarly, we can write
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�p1 = �0 + �p and �p2 = �0 − �p. �15�

Because we have assumed that all students stay at the same
side of the distribution curves for both pre- and post- tests,
we have �p1−�p2�2�p or �p��p. For the pth pair of stu-
dents, ḡC,p can be calculated as

ḡC,k =
�0

�1 − x̄� − �p
2/�1 − x̄�

−
�p�p

�1 − x̄�2 − �p
2 . �16�

By using similar arguments as for the case of expansion, we
have

ḡE � ḡ0 � ḡC. �17�

However, a general relation between ḡC and g cannot be
determined. In this case the correlation between the indi-
vidual student’s normalized gains and the pre-test scores will
be smaller than that of constant shift and can be negative.

Abnormal shift. An abnormal shift describes the case in
which students with below average pre-test scores have
above average post-test scores and students with above av-
erage pre-test scores have below average post-test scores;
that is, students exchange sides on the distribution curve af-
ter instruction. In this case students with higher pre-test
scores have much smaller score changes than students with
lower pre-test scores. Figure 8 shows an example where the
pre and post distributions have the same shape and students
exist in symmetrical pairs.

Denote ḡA as the average of individual student gains as-
suming an abnormal shift. For the pth pair of students we
denote �p� as the absolute value of the difference between �0
and the pair of students’ score changes ��p��1−�0=�0

−�2�0�. We then have

Fig. 7. A class going through a Normal Contraction process—students with
low pre-test scores achieve larger absolute score improvement than students
with high pre-test scores; however, all students stay at the same sides of the
class score distributions for both pre- and post-tests.

Fig. 8. A class going through an Abnormal Shift process—students with low
pre-test scores achieve larger absolute score changes than students with high
pre-test scores, and students switch sides on the class score distributions of

pre- and post-tests.
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ḡA,p =
1

2
	 �0 + �p�

�1 − x̄ + �p�
+

�0 − �p�

�1 − x̄ − �p�
�

=
�0�1 − x̄� − �p · �p�

�1 − x̄�2 − �p
2 . �18�

For the case of contraction with the same pre-test distribution
and same post-test average score �see Fig. 7� it is easy to see
that �p���p. Note that we can rewrite Eq. �16� as

ḡC,p =
�0�1 − x̄� − �p · �p

�1 − x̄�2 − �p
2 . �19�

By comparing Eq. �19� with Eq. �18�, we conclude that

ḡC � ḡA. �20�

In Fig. 8 we define a new variable, �p��yp− ȳ�. Therefore,
we can write

�0 = �2 + �p + �p� , �21�

which gives

�p� = �0 − �2 = �p + �p� � �p. �22�

To compare ḡA,p with g, let’s assume ḡA,p is larger than g,

ḡA,p =
�0�1 − x̄� − �p�p�

�1 − x̄�2 − �p
2 �

�0

1 − x̄
= g , �23�

which gives �0�1− x̄�2−�p�p��1− x̄���0�1− x̄�2−�0�p
2.

Therefore �0��p� /�p�1− x̄�� �1− x̄� Because �0= ȳ− x̄�1
− x̄ the assumption in Eq. �23� cannot hold. Therefore, for an
abnormal shift we have

g � ḡA. �24�

The correlation between the individual student’s normalized
gains and the pre-test scores in this case will most likely be
negative.

In summary, we conclude that

¯ ¯ ¯ ¯

Table I. Results of a computer simulation for a class g
The data assumes a normal distribution with x̄=0.39

Processes �y �y /�x

Constant
Shift

0.145 1.00

Expansion 0.264 1.80
0.219 1.50
0.146 1.00

Contraction 0.131 0.90
0.098 0.67
0.073 0.50
0.044 0.30

Abnormal
Shift

0.218 1.50
0.146 1.00
0.073 0.50
0.044 0.30
gE � g0 � �gC,g� � gA. �25�
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Note that g is the normalized gain calculated with the
class’ average scores, whereas, ḡX is the average of indi-
vidual student’s normalized gains under different population
assumptions.

If we use the data shown in Fig. 3, we find ḡ=0.364 and
g=0.435. This result suggests some abnormal shifts, as can
be seen from the scatter plot in Fig. 4; quite a few students
with medium to high pre-test scores have zero or below zero
score changes, smaller than that of many students with lower
pre-test scores. Note that there are many students having
negative gains, which is not included in our analysis; how-
ever, it can be shown that the relation in Eq. �25� is also valid
in this condition.

Simulation results. To see how the derived relations appear
numerically, we have done some computer simulations.
Table I shows the simulation results for the four cases we
have discussed. The class size is chosen to be 100. The pre-
test score distribution is randomly generated according to a
Gaussian distribution with x̄=0.39, ȳ− x̄=0.2, and �x=0.15.
If an individual student’s pre-test score is smaller than 0 or
greater than 1, the data is rejected and a new score is gener-
ated. The post-test scores are generated based on the pre-test
scores with the different models listed in Table I. For ex-
ample, in the case of constant shift a constant value of the
score change is added to the pre-test score to obtain the
matched post-test score. The post-test scores are also trun-
cated to be between 0 and 1. The conditioning of the data
�e.g., the truncations� will bias the simulation results. How-
ever, because the standard deviation of the pre-test score is
small, the probability for problematic data points is �2%.
Each record in Table I is the average result of 1000 simulated
classes. The simulation calculates the gains for both positive
and negative values. The purpose of the simulation is to pro-
vide a computational validation of the theoretical analysis
and give a rough estimate of what range of magnitude re-
searchers can expect when dealing with data. The results in
Table I show that the computational results are consistent
with the analytical predictions, and that the differences be-
tween the two methods of calculating the normalized gains

through four different changes in pre- and post-tests.
0.145, and ȳ=0.59.

g ḡ-g �ḡ-g� /g

0.330 0.025 7.6%

0.329 0.059 17.9%
0.329 0.062 18.8%
0.329 0.025 7.6%
0.330 0.017 5.2%
0.330 0.000 0.0%
0.330 −0.012 −3.6%
0.329 −0.024 −7.0%
0.330 −0.074 −22.4%
0.330 −0.061 −18.5%
0.330 −0.049 −14.9%
0.329 −0.044 −13.1%
oing
, �x=

ḡ

0.355

0.388
0.391
0.354
0.347
0.330
0.318
0.306
0.256
0.269
0.281
0.286
are often at 10% level.
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V. DISCUSSION

Our main purpose was to understand the difference be-
tween the two ways of calculating average gain. We made
several assumptions including a normal distribution of scores
and no students scoring lower on the post-test than on the
pre-test. In addition, we discussed only highly idealized
changes that might result from instruction. Nonetheless, this
discussion provided some useful information. For example,
by comparing ḡ and g, we may be able to make inferences
about how a group of students has changed: If ḡ is greater
than g, we can infer that students with low pre-test scores
tend to have either smaller or similar score improvement
than students with high pre-test scores. On the other hand, if
ḡ is smaller than g, students with low pre-test scores tend to
have larger score improvements than students with high pre-
test scores.

Several issues related to ḡ, g, and error analysis are im-
portant to this discussion. These issues are discussed in Ref.
4. In addition, error propagation from the measured scores to
the calculated normalized gains and the many types of un-
certainties embedded in the pre-post measurements are not
discussed here. A detailed discussion of these issues will be
presented in a separate paper.
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