
Model analysis: Representing and assessing the dynamics of student learning

Lei Bao*
Department of Physics, The Ohio State University, 174 West 18th Ave., Columbus, Ohio 43210, USA

Edward F. Redish†

Department of Physics, University of Maryland, College Park, Maryland 20742, USA
�Received 15 May 2005; published 2 February 2006�

Decades of education research have shown that students can simultaneously possess alternate knowledge
frameworks and that the development and use of such knowledge are context dependent. As a result of
extensive qualitative research, standardized multiple-choice tests such as Force Concept Inventory and Force-
Motion Concept Evaluation tests provide instructors tools to probe their students’ conceptual knowledge of
physics. However, many existing quantitative analysis methods often focus on a binary question of whether a
student answers a question correctly or not. This greatly limits the capacity of using the standardized multiple-
choice tests in assessing students’ alternative knowledge. In addition, the context dependence issue, which
suggests that a student may apply the correct knowledge in some situations and revert to use alternative types
of knowledge in others, is often treated as random noise in current analyses. In this paper, we present a model
analysis, which applies qualitative research to establish a quantitative representation framework. With this
method, students’ alternative knowledge and the probabilities for students to use such knowledge in a range of
equivalent contexts can be quantitatively assessed. This provides a way to analyze research-based multiple
choice questions, which can generate much richer information than what is available from score-based
analysis.
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I. INTRODUCTION

One of the most important things educational researchers
have learned over the past few decades is that it is essential
for instructors to understand what knowledge students bring
into the classroom and how they respond to instruction.
Qualitative physics education research on a variety of topics
has documented that students bring knowledge from their
everyday experience and previous instruction to their intro-
ductory physics classes and that this knowledge affects how
they interpret what they are taught.1 Two important facts are
critical in any attempt to probe student knowledge.

�i� Student knowledge �ideas, conceptions, interpretations,
assumptions� relevant to physics may be only locally coher-
ent. Different contexts can activate different �and contradic-
tory� bits of knowledge.2,3

�ii� On any particular topic, the range of alternative con-
ceptions seen in a particular population tends to be fairly
limited. Often, two or three specific ideas account for most
observed student responses �though sometimes as many as a
half a dozen are needed�.4 �Another point that is often noted
is that these alternative conceptions can be quite firmly held
and difficult to transform. Since this paper is about measur-
ing student conceptions and not changing them, that is less
relevant here.�

These two ideas have been used by many researchers to
create multiple-choice exams that use common alternative
student conceptions revealed by qualitative research as “at-
tractive distracters.”5,6 The impact of these exams can be
both revealing and powerful. Faculty who are not aware of
the prevalence and strength of student alternative concep-
tions fail to see the distracters as reasonable alternatives and
may consider the exam as trivial. They can then be surprised

when many of their students choose these distracters, even
after instruction.7

Careful analysis of the responses to these exams shows
that for many populations the responses are not consistent. A
student may answer one item correctly, but answer another
item, one that an expert might see as equivalent to the first,
incorrectly. The assumption that a student “either knows the
topic or does not know it” appears to be false, especially for
students in a transition state between novice and expert. The
level of a student’s confusion—how the knowledge the stu-
dent activates depends on context—becomes extremely im-
portant in assessing the students’ stage of development.

In small classes, this information can be obtained from
careful one-on-one dialogs between student and teacher. In
large classes, such as those typically offered in introductory
science courses at colleges and universities, such dialogs are
all but impossible. Instructors in these venues often resort to
pre-post testing using research-based closed-ended diagnos-
tic instruments.

But the results from these instruments tend to be used in a
very limited way—through overall scores and average pre-
post gains. This approach may miss much valuable informa-
tion, especially if the instrument has been designed on the
basis of strong qualitative research, contains subclusters of
questions probing similar issues, and has distracters that rep-
resent alternative modes of student reasoning.

In this paper, we present a method of model analysis that
allows an instructor to extract specific information from a
well-designed assessment instrument �test� on the state of a
class’s knowledge. The method is especially valuable in
cases where qualitative research has documented that stu-
dents enter a class with a small number of strong naive con-
ceptions that conflict with or encourage misinterpretations of
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the scientific view. As students begin to learn scientific
knowledge that appears to contradict their intuitive concep-
tions, they may demonstrate confusions, flipping from one
approach to another in an inconsistent fashion.

The model analysis method works to assess this level of
confusion in a class as follows.

�i� Through systematic research and detailed student inter-
views, common student models are identified and validated
so that these models are reliable for a population of students
with a similar background.

�ii� This knowledge is then used in the design of a
multiple-choice instrument. The distracters are designed to
activate the common student models, and the effectiveness of
the questions is validated through research.

�iii� One then characterizes a student’s responses with a
vector in a linear “model space” representing the �square
roots of the� probabilities that the student will apply the dif-
ferent common models.

�iv� The individual student model states are used to create
a “density matrix,” which is then summed over the class. The
off-diagonal elements of this matrix retain information about
the confusions �probabilities of using different models� of
individual students.

�v� The eigenvalues and eigenvectors of the class density
matrix give information not only how many students got
correct answers, but about the level of confusion in the state
of the class’s knowledge.

Our analysis method is mathematically straightforward
and can be easily carried out on a standard spreadsheet. The
result is a more detailed picture of the effectiveness of in-
struction in a class than is available with analyses of results
that do not consider the implications of the incorrect re-
sponses chosen by the students.

Although the desire to “understand what our students
know” is an honorable one, we cannot make much progress
until we both develop a good understanding of the character-
istics of the system we are trying to influence �the student’s
knowledge structure� and have a language and theoretical
frame with which to talk about it. Fortunately, much has been
learned over the past few decades about how students think
and learn and many theoretical models of human cognition
have been developed and are beginning to show some evi-
dence of coalescing into a single coherent model.8,9 In this
model, knowledge corresponds to the activation of a network
of neurons. These networks can be linked so that activation
of one bit of knowledge is coordinated with the activation of
other bits. This model treats knowledge in a highly dynamic
fashion and supports the idea that an individual may have
alternative contradictory models that can be activated by dif-
ferent contexts without their being particularly aware of the
contradiction. We discuss this theoretical framework briefly
in Sec. II.

Despite the progress in cognitive science, most educa-
tional researchers analyzing real-world classrooms make
little use of this knowledge. Many of the mathematical tools
commonly used to extract information from educational ob-
servations rely on statistical methods that �often tacitly� as-
sume that quantitative probes of student thinking measure a
system in a unique true state. We believe that this model of
assessing student learning is not the most appropriate one for

analyzing a student’s progress through goal-oriented instruc-
tion and is inconsistent with current models of cognition.
�Examples will be given in the body of the paper.� As a
result, the analysis of quantitative educational data can draw
incomplete or incorrect conclusions even from large samples.

In Secs. III and IV, we describe in detail model analysis, a
method that represents the student’s mental state as a vector
in a “model space” spanned by a set of basis vectors, each
representing a unique type of reasoning that has been iden-
tified through qualitative research. In Sec. V, we apply a
model analysis to Force Concept Inventory results and show
how we can get new insights into the state of students’
knowledge. In Sec. VI, we compare our method to other
more traditional approaches. Section VII gives our conclu-
sions and suggestions as to how the approach can be used.

II. THEORETICAL FRAME: A MODEL OF
COGNITION

The theoretical framework we use to describe various
models of thinking and learning is based on a triangulation
of three kinds of scientific research: phenomenological ob-
servations of normal behavior, especially in educational
environments1,10 �often carried out by educational research-
ers�; careful studies of responses to highly simplified experi-
ments designed to get fundamental cognitive structures11,12

�mostly carried out by psychologists�; and studies of the
structure and functioning of the brain �mostly carried out by
neuroscientists�.9,13 In each of these areas of research, nu-
merous models of cognition have been built. Although there
is still much uncertainty about what the final model will look
like, there is now a significant overlap. We particularly rely
on elements that have significant support in all three areas.

This evolving model is described in some detail in other
papers.14–16 For our work here, we need to specifically un-
derstand three elements of the model: the nature of the stor-
age and access to elements of knowledge in memory, how
this leads to context dependence, and how these features of
learning can be represented and assessed.

A. Long-term memory

The critical issue for teaching and learning is long-term
memory. We are interested not only in what our students
know, but in their access to that knowledge: what contexts
activate it for them. We use the term knowledge element to
refer to something a student knows that seem irreducible to
them �that is, containing no obvious component parts�. It
could be something that they believe or a simple procedure.

A few principles briefly describe some characteristics of
long-term memory that can help us better understand the
responses of students.

�i� Long-term memory is associative and productive. Ac-
tivating one knowledge element typically leads, with some
probability, to the activation of other associated elements.

�ii� Activation and association of knowledge elements are
context dependent. What is activated and subsequent activa-
tions depend on the context, both external and internal
(other activated elements).
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These principles are supported by a wide variety of stud-
ies ranging from the ecological to the neurological.

An example from the physics education literature illus-
trates the implications of the context dependence of recall
from long-term memory in problem solving. Steinberg and
Sabella asked two equivalent questions on Newton’s first law
to students in engineering physics at the University of
Maryland.17 In both questions, the students were asked to
compare the forces acting on an object moving vertically at a
constant velocity. One question was phrased in physics terms
using a laboratory example �“A metal sphere is resting on a
platform that is being lowered smoothly at a constant veloc-
ity…”�. The other was phrased in common speech using ev-
eryday experience �“An elevator is being lifted by a
cable…”�. Here, both the wording of the questions and the
ways of the motion of the elevator are important contextual
features. In both problems, students were instructed to ignore
friction and air resistance.

On the first problem, 90% of the students gave the correct
answer that the normal force on the sphere is equal to the
downward force due to gravity. On the second problem, only
54% chose the correct answer: the upward force on the el-
evator by the cables equals the downward force due to grav-
ity. More than a third, 36%, chose the answer to this second
problem reflecting a common incorrect model: the upward
force on the elevator by the cables is greater than the down-
ward force due to gravity.

A strong context dependence in student responses is very
common, especially when students are just beginning to
learn new material. Students are unsure of the conditions
under which rules they have learned apply, and they use
them either too broadly or too narrowly. �Understanding how
these conditions apply is a crucial part of learning a new
concept.� Students often treat problems that look equivalent
to an expert quite differently.

B. Organization of long-term memory

A great deal has been learned about the organization of
long-term memory and reasoning in a variety of contexts
including the interpretation of text,18 the learning of
grammar,19 approaching problem solving in mathematics,20

and the interpretation of physical phenomena.21 Since our
primary interest is science learning in general and the learn-
ing of physics in particular, we restrict our discussion here to
thinking and learning about physical phenomena. Much of
what has been learned under this rubric has analogs in other
areas. We briefly discuss two commonly used theoretical
models of student thinking in physics: the knowledge-in-
pieces model of diSessa2 and Minstrell3 and the alternate-
conceptions model of Caramazza et al.22 and Vosniadou23

and their collaborators.
DiSessa investigated people’s sense of physical

mechanism—that is, their understanding of why things work
the way they do.2,21 What he found was that many students,
even after instruction in physics, often come up with simple
statements that describe the way they think things function in
the real world. They often consider these statements to be
“irreducible”—as the obvious or ultimate answer; that is,

they cannot give a “why” beyond it. “That’s just the way
things work,” is a typical response. DiSessa refers to such
statements as phenomenological primitives or p-prims. Min-
strell observed that students’ responses to questions about
physical situations can frequently be classified in terms of
reasonably simple and explicit statements about the physical
world or the combination of such statements. He refers to
such statements as facets.3

In the modular model of diSessa and Minstrell, students
are assumed to have their knowledge “in pieces.” Different
bits of knowledge tend to be weakly connected. As a result,
different contexts can easily cue different responses, al-
though in this model it is possible that a particular “piece”
can be robust and activated with a high probability in a va-
riety of situations.

An alternative view of student thinking in physics is the
one espoused explicitly by Caramazza et al. and
Vosniadou.22,23 In this view, students possess a coherent and
organized “alternative” or “naive” theory of a particular
physical topic or situation. Despite describing student re-
sponses as theory like, Vosniadou cites cases in which stu-
dents appear to be mixing elements of contradictory models.

In the theory described in Redish14 and Hammer et al.,15

these two theories can be seen as extreme assumptions about
the nature of knowledge structures most likely to be found
among naive students. The difference between the two theo-
retical models is largely in the expectation of whether one
will observe responses that can be interpreted as consistent
across many contexts or depending more sensitively on con-
text. The question as to which model is correct becomes an
empirical one. The answer as to which model should be pre-
ferred could depend on both the populations involved and the
circumstances that one wants to consider as an appropriate
range of contexts. In one study, a careful multifaceted obser-
vation of the behavior of preservice teachers learning topics
in physics over long periods �many weeks� revealed shifts in
student choices of reasoning from consistent �and wrong�,
through mixed, and back to consistent �this time, agreeing
with the more scientific conceptions�.24 If this turns out to be
general, assessing the state of the students’ choice of reason-
ing patterns could have important instructional implications.

To be able to discuss the cognitive issues clearly and
without prejudice towards one model or another, we use the
general term mental model: a robust and coherent knowledge
element or strongly associated set of knowledge elements.
For example, in the contexts involving motion, students of-
ten believe that there is always a force in the direction of
motion. This represents a robustly established association be-
tween motion and force and thus is characterized as a mental
model. We use this term in a broad and inclusive sense. A
mental model may be simple or complex, correct or incor-
rect, activated as a whole or generated spontaneously in re-
sponse to a situation. Note that this term appears frequently
in the cognitive and educational literature, often in undefined
and inconsistent ways. Our use of the term is probably clos-
est to that used by Norman.25

The popular �and sometimes debated� term misconception
can be viewed as reasoning involving mental models that
have problematic elements for the student’s creation of an
expert view and that appear in a given population with sig-
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nificant probabilities �though not necessarily consistently in a
given student�. We stress that our use of this term implies no
assumption about the structure or cognitive mental creation
of this response. In particular, we do not need to assume
either that it is irreducible �has no component parts� or that it
is stored and recalled rather than generated on the spot.

In assessing the state of students’ knowledge, what one
needs to determine is both the models the students possess
and can use and the context dependence of their use of these
models.

C. Context dependence and the state of the student from the
point of view of an expert

The context dependence of the cognitive response may be
considered in a variety of ways. From the point of view of
the student, his or her mental system may feel perfectly con-
sistent, despite appearing inconsistent to an expert. The stu-
dent might use a mental model inappropriately because he or
she has failed to attach appropriate conditions to its
application,26 the student might fail to associate a mental
model with a circumstance in which it is appropriate, or the
student may associate with different mental models in
equivalent circumstances, cueing on irrelevant elements of
the situation and not noticing that the circumstances are
equivalent.

From the point of view of the cognitive researcher, it may
be of great interest to consider the student as always being in
a consistent mental state or as flipping from one mental state
to another in response to a variety of cues. However, from
the point of view of the educational researcher or of the
instructor interested in goal-oriented instruction—that is, in
acculturating students to understand particular community-
developed viewpoints—we suggest that there is considerable
value in analyzing the student thinking as projected against
an expert view. The “expert” here needs to be both a subject
expert and an expert in education research so as not to un-
dervalue or misunderstand the view of the student. For ex-
ample, in considering the motion of compact objects, a naive
physics student might view objects in terms of a generic
concept of “motion” with inappropriately entangled ideas of
position, velocity, acceleration, and force. The mental mod-
els used by the student must be understood in terms of their
own internal consistencies, not as “errors” when projected
against the expert view.

Suppose we prepare a sequence of questions or situations
in which an expert would use a single, coherent mental
model. We refer to these as a set of expert-equivalent ques-
tions. Further, suppose that when presented with some ques-
tions from such a set, a particular student can use a variety of
mental models instead of a single coherent expert model.
Such a situation is extremely common in many learning situ-
ations and is well documented to occur frequently in intro-
ductory physics.27 How each question in the set cues a stu-
dent to choose a particular model �or a set of models�
depends not only on the student’s educational history, but
even on the student’s mental state at the particular instant the
question is probed. Since both the educational history and
the student’s mental state are difficult to determine, we pro-

pose that the most appropriate way of treating this situation
is probabilistically.

If a student always uses a particular mental model in a
reasonably coherent way in response to a set of expert-
equivalent questions, we say they are in a pure model state.
If the student uses a mixture of distinct mental models in
response to the set of questions, we say the student is in a
mixed model state. We view the individual student who is in
a mixed state as simultaneously occupying a number of dis-
tinct models with different probabilities in applying these
models in expert equivalent contexts. The distribution pattern
of the probabilities gives a representation for a student model
state.

When the student’s state is probed by the presentation of a
particular question or scenario, the student will often respond
by activating a single mental model. We view the student’s
mental state as having been momentarily collapsed by the
probe into the model state selected.

The process by which this selection is made can be quite
complex. In some cases, only a single model is activated. In
others, multiple models are activated and an “executive pro-
cess” is assumed to make a choice of one, suppressing other
models. When such a choice is difficult to make, a student
can get into an explicit state of confusion where several
models appear to be equally plausible �but generating con-
tradictory results� and the student cannot determine which
one is more appropriate to use. Depending on the design of
the probing instruments, such states may or may not be ex-
tracted. For example, multiple-choice single-response ques-
tions often force students to pick one answer and thus can
only measure the existence of one of the models, while
multiple-choice multiple-response questions can extract in-
formation about such mixing states. Although this topic has
not been studied extensively �to our knowledge� in physics
education, there is extensive research on the issue in cogni-
tive and neuroscience.28

Note that the probabilistic character of the student model
state arises from the presentation of a large number of ques-
tions or scenarios, not from the probing of multiple students.
We view the context dependence of mental model generation
as a fundamental probabilistic character built into the indi-
vidual. The probabilistic treatment is a way of treating many
“hidden variables” in the problem that are both uncontrol-
lable and possibly unmeasurable even in principle.

This approach, which will be developed mathematically
below, provides an alternative assumption to the one tradi-
tionally made,29 that a probe of the state of a student yields
the “true value” plus some random error: M =T+X. Although
it may be appropriate to consider a student mental state as
having a “true value” on a very short time scale �a few sec-
onds or less�, this may not be appropriate when thinking
about a students knowledge state over a period of minutes,
hours, or days. We propose that a more appropriate model for
analyzing student thinking is to consider the distribution of a
student’s inconsistent results on a set of expert equivalent
questions as a measure of a property of the student, not as
“random error.” �Of course random errors do occur and must
be taken into account through a statistical consideration of
the effect of random fluctuations on the state probabilities
introduced in this paper. Consideration of these effects is
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beyond the scope of this paper and is discussed in Ref. 30.�
In this paper, the probabilistic distribution is interpreted as
fundamental and representing the characteristics of students.

As discussed earlier, mental models are productive struc-
tures that can be applied to a variety of different physical
contexts to generate explanatory results. Mental models can
be either complex or simple. For this work, to clarify the
nature of our model and method, we have chosen to restrict
our considerations to simple models—essentially single fac-
ets. We do not intend to imply that all student reasoning is
describable by such a simple situation. There are, however,
numerous examples of such situations, and we intend to
demonstrate the value of our approach by applying it to this
simple, highly restrictive situation.

The mixed use of models or competing concepts appears
to be a typical and important stage in student learning of
physics.6,27,30,31 To study the dynamical process of students’
applying their models, we first define two important con-
cepts: common models and student model states.

D. Common models

When the learning of a particular physics concept is ex-
plored through systematic qualitative research �these re-
searches should always involve detailed individual student
interviews and the results should also be verifiable by other
researchers�, researchers are often able to identify a small,
finite set of commonly recognized models.32 These models
often consist of one correct expert model and a few incorrect
or partially correct student models. Note that different popu-
lations of students may have different sets of models that are
activated by the presentation of a new situation or problem.
When presented with novel situations, students can activate a
previously well-formed model or, when no existing models
are appropriate, they can also create a model on the spot
using a mapping of a reasoning primitive or by association to
salient �but possibly irrelevant� features in the problem’s pre-
sentation. The identified common student models can be
formed in both ways. Although the actual process is not sig-
nificant in the research of this paper, the specific structure of
the models involved may have important implications for the
design of instruction.

E. Student model state

When a student is presented with a set of questions related
to a single physics concept �a set of expert equivalent ques-
tions�, two situations commonly occur.

�i� The student consistently uses one of the common mod-
els to answer all questions.

�ii� The student uses different common models and is in-
consistent in using them; i.e., the student can use one of the
common models on some expert-equivalent questions and a
different common model on other questions.

The different situations of the student’s use of models are
described as student model states. The first case corresponds
to a pure model state and the second case to a mixed model
state.

When analyzing the use of common models, it is neces-
sary to allow an additional dimension to include other less

common and/or irrelevant ideas that student might come up
with. To collect this set of responses we identify a null
model—one not describable by a well-understood common
model. With the null model included, the set of models be-
comes a complete set; i.e., any student response can be cat-
egorized. �Of course, in addition to collecting random and
incoherent student responses, coherent models that have not
yet been understood as coherent by researchers may well be
classified initially as “null.” When a significant fraction of
student responses on a particular question winds up being
classified as null, it is possible that a better understanding of
the range of student responses needs to be developed through
qualitative research. In this way, we also have a quantitative
tool to alert the needs of further qualitative research.� Spe-
cific examples of common models and student model states
will be discussed in later sections.

Using a set of questions designed to probe a single con-
cept, we can measure the probability for a single student to
activate the different common models in response to these
questions. We can use these probabilities to represent the
student model state. Thus, a student’s model state can be
represented by a specific configuration of the probabilities
for using different common models in a given set of situa-
tions related to a particular concept.

Figure 1 shows a schematic of the process of cueing and
activating a student’s model, where M1 , . . . ,Mw represent the
different common models �assuming a total of w common
models including a null model� and q1 , . . . ,qw represent the
probabilities that a particular situation will result in a student
activating the corresponding model. �Note that given differ-
ent sets of questions, the measured probabilities can be dif-
ferent. The measured student model state is a result of the
interaction between the individual student and the instrument
used in the measurement and should not be taken as a prop-
erty of the student alone. This is discussed in detail in the
next section.� For convenience, we consistently define M1 to
be the expert model and Mw to be the null model. The pos-
sible incorrect models are represented with M2 , . . . ,Mw−1.

III. STUDENT MODEL SPACE: A MATHEMATICAL
REPRESENTATION

We represent the mental state of the student with respect
to a set of common models in a linear vector space. Each

FIG. 1. Using a set of questions designed for a particular phys-
ics concept, we can measure the probability for a single student to
use different physical models in solving these problems. In the fig-
ure, M1 , . . . ,Mw represent the different physical models �there are a
total of w physical models including a null model� and q1 , . . . ,qw

represent the probabilities for a student being triggered into activat-
ing the corresponding models.
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common model is associated with an element of an orthonor-
mal basis, e�:

e1 =�
1

0

�
0
�, e2 =�

0

1

�
0
�, . . . , ew =�

0

0

�
1
� , �1�

where w is the total number of common models being con-
sidered �including a null model� associated with the concept
being probed. It can be argued that different mental models
can have common and overlapping components.

The use of orthogonal vectors in representing the different
common models is inspired by studies in biologically plau-
sible neural networks; the brain can distinguish overlapping
inputs into distinctive categories, which are represented in
terms of sparsely distributed orthogonal neural activation
patterns.33 Suppose a set of concepts is developed over a
range of dimensions of features. Between any two concepts,
there will be certain dimensions that are identical and certain
dimensions that are different. For example, one can imagine
a list of identical and different features between the concept
of a bird and the concept of a bat. In conceptual space, birds
and bats are two distinctive categories, whereas in feature
space, they have many overlapping features. Here, orthogo-
nality was employed in conceptual space only, rather than in
feature space, to represent the distinctive conceptual catego-
ries. Another example can be found in image processing for
symbol recognition. The letters “B” and “P” have many
overlapping features in “pixel” space as seen by a computer
through a digital camera. Once recognized, the two letters
are orthogonal categories in symbolic space. Such a treat-
ment is a standard method in pattern recognition and signal
processing. The orthogonal basis in Eq. �1� is employed in a
similar manner to label the distinctive categories of student
knowledge �models�.

We refer to the space spanned by these model vectors as
the model space. As discussed in Sec. II, in general, the
student can be expected to be in a mixed model state. For a
given instrument, we represent this state using the probabili-
ties for a student to be cued into using each of the different
models. In principle, these probabilities can be probed in
experiments; however, a precise determination is often diffi-
cult to achieve even with extensive interviews. But in prac-
tice we can obtain estimations of this probability with prop-
erly designed measurement instruments.

A convenient instrument is a set of research-based
multiple-choice questions. Suppose we give a population of
students m multiple-choice single-response �MCSR� ques-
tions on a single concept for which this population uses w
common models. Define Q� k as the kth student’s probability
distribution vector measured with the m questions. Then we
can write

Q� k =�
q1

k

q2
k

�
qw

k
� =

1

m�
n1

k

n2
k

�
nw

k
� , �2�

where q�
k represents the probability for the kth student to use

the �th model in solving these questions and n�
k represents

the number of questions in which the kth student applied the
�th common model. We also have

�
�=1

w

n�
k = m . �3�

In Eq. �2� we have taken the probability that the kth stu-
dent is in the �th model state to be q�

k =n�
k /m. Note that q�

k is
affected by the specific question set chosen. The student
model state represents the result of an interaction between
the student and particular instrument chosen.

To see why this is the case, consider an infinite set of
expert equivalent questions concerning a particular concept
that an individual student might consider as requiring two
different models, model A or model B, depending on the
presence or absence of a particular �actually irrelevant� ele-
ment in the problem. Assume that if the element is present,
the student strongly tends to choose model A; otherwise,
they will choose model B. Since the set of questions can
contain infinitely many items that have the element and infi-
nitely many items that do not, the instrument designer may
create an instrument that has any proportion of the items
containing the irrelevant element. The percentage of student
choices of model A or B thus depends on the number of
items on the test containing A.

The student model state as measured by a particular in-
strument therefore depends on both the student and instru-
ment. Since we are concerned with evaluating normative in-
struction, in which the student is being taught a particular
model or set of models, the choice of the proportion of ques-
tions depends on normative goals—what the instrument de-
signer considers important for the student to know. The stu-
dent model state should therefore be thought of as a
projection of student knowledge against a set of normative
instructional goals, not as an abstract property belonging to
the student alone. For the purpose of assessment, researchers
can develop �through systematic research on student models�
a rather standardized set of questions based on the normative
goals. These questions can then be used to provide a com-
parative evaluation of situations of student models for differ-
ent populations.

We do not choose the probability vector Q� k to represent
the model state of the kth student. Rather, we choose a vector
consisting of the square roots of the probabilities. We refer to
these square roots as the probability amplitudes. In principle,
either approach might be considered. In practice, there are
considerable advantages to the square root choice, as it natu-
rally leads to a convenient structure, the density matrix, as
we will see below. �We choose to define the square root
vector so that when the inner and outer products of this vec-
tor are taken with itself it yields useful and straightforward
relationships. The inner product leads to the sum of prob-
abilities constraint, and the outer product produces the den-
sity matrix defined in Eq. �7�. Although there could be many
ways of constructing a density matrix from probabilities and
their joint products, we choose to build with the square root
vector. This construction respects the symmetry of the space
with respect to the exchange of the models, and the use of a
matrix built by outer products permits useful manipulative
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techniques.� We therefore choose to represent the model state
for the kth student in a class with a vector of unit length in
the model space, uk:

uk =�
	q1

k

	q2
k

�
	qw

k
� =

1
	m�

	n1
k

	n2
k

�
	nw

k
� , �4�

where

uk
Tuk = �

�=1

w

q�
k = 1. �5�

IV. ANALYZING STUDENT MODELS WITH
MULTIPLE-CHOICE INSTRUMENTS

Using our mathematical representation, we can analyze
student responses to multiple-choice questions to measure
student model states and study the evolution of a class’s
learning. The development of an effective instrument should
always begin with systematic investigations of student diffi-
culties in understanding a particular concept. Such research
often relies on detailed interviews to identify common mod-
els that students may form before, during, and after instruc-
tion. Using the results from this research, multiple-choice
questions can be developed where the choices of the ques-
tions is designed to probe the different common student
models. �For some tools to help design effective distracters
and to see how different design may affect the measurement,
see Refs. 30 and 34.� Then interviews are again used to con-
firm the validity of the instrument, elaborate what can be
learned from the data, and start the cyclic process to further
develop the research.

In physics education, researchers have developed
research-based multiple-choice instruments on a variety of
topics. The two most popular instruments available on con-
cepts in Newtonian mechanics are the FCI and FMCE.5,6 The
questions were designed to probe critical conceptual knowl-
edge, and their distracters are chosen to activate common
naive conceptions. As a result, many of the questions on
these tests are suitable for use with the model analysis
method. In this paper, we use the data of the FCI test from
engineering students in the calculus-based physics class at

the University of Maryland. Results of the FMCE test with
students from other schools are discussed in Ref. 30.

A. Force-motion model

An example in Newtonian mechanics where students
commonly have a clearly defined and reasonably consistent
facet is the relation of force and motion. Student understand-
ing of the force-motion connection has been thoroughly stud-
ied for the past two decades, and researchers have been able
to develop a good understanding of the most common stu-
dent models.4,34–38 A commonly observed student difficulty
is that students often think that a force is always needed to
maintain the motion of an object. As a result, students often
have the idea that there is always a force in the direction of
motion. For the population in our introductory physics class,
this is the most common incorrect student model related to
the concepts of force and motion. Some even consider that
the force is proportional to the velocity. In the physics com-
munity model, an unbalanced force is associated with a
change in the velocity—an acceleration. Therefore, for this
concept, we can define three common models.

Model 1: a nonzero net force results in change of the
velocity of motion �correct expert model�.

Model 2: there is always a force in the direction of motion
�student model, sometimes correct, sometimes incorrect�.

Model 3: null model.
In the FCI, five questions activate models associated with

the force-motion concept �questions 5, 9, 18, 22, and 28�. �In
the FCI, two clusters of questions, those on Force-Motion
and Newton III, provide most of the FCI’s discriminatory
power. For details on how we identified these questions us-
ing a quantitative argument, see Ref. 34.� As an example,
consider question 5 �see Fig. 2�. The distracters “a,” “b,” and
“c” represent three different responses associated with the
same incorrect student model �model 2�. All of the three
choices involve a force in the direction of motion. If a stu-
dent selects one of these three choices, we consider that the
student is using model 2. �Here we use a model assignment
scheme based on the student response to a single item. More
complex situations can be considered. See Ref. 30.� To use
this method, we have to assume that if a student is cued into
using a particular model, the probability for the student to
apply the model inappropriately is small ��10% empirically�
compared to random guessing. Such probabilities can often
be evaluated with interviews. �More detailed analysis on the

FIG. 2. Question 5 of the FCI test.
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certainty of such a model assignment is discussed in Chap. 4
of Ref. 30. The probability can also be measured with spe-
cially designed questions where we can give a cluster of
questions based on similar context settings with the leading
ones �often simple� to test if the students are triggered into a
particular model state and the following ones �somewhat
more complex� to test if the students can apply the models
correctly. We have also developed modeling schemes based
on the student responses patterns on a series of questions.
Details can also be found in Chap. 5 of Ref. 30.� More de-
tails on the uncertainties of this method can be found in Ref.
39. With this method, if a student answers “d” on this ques-
tion, we assume that it is very likely for this student to have
a correct model. �Note that this is not always the case. With
some questions, students can choose the right answer for the
wrong reasons. To obtain more accurate representations of
student reasoning using our method, the wording of such
items needs to be improved and the probability of student
model crossover estimated through interviewing.30� Choice
“e” reflects the Aristotelian idea and is rarely held by stu-
dents in our introductory physics class. If a student does
choose this option, we consider this student as having a null
model.

We assume that there are clear associations between the
three models and the responses corresponding to the five FCI
questions in the force-motion cluster as listed in Table I.
Notice that the mappings between model and item do not
have to be one to one. It is appropriate to have multiple
choices mapped to a single model but not the opposite.39

Further, note that having the correct model does not imply
having the correct answer. The student might have a correct
model but employ it incorrectly. If there are known to be
common errors in applying a correct model, we might want
to include some of these errors as distracters. A good under-
standing of the most common student errors allows the con-
struction of questions that probe both student model choice
and student accuracy. In this analysis we only consider the
students’ model choice. This underlines the fact that a model
analysis provides different information about student think-
ing than does a right and wrong analysis.

Using Table I, we can obtain an estimation of individual
students’ model states from students’ responses. For ex-
ample, if a student answers the five questions with “a,” “d,”
“a,” “d”, and “b,” the student probability vector is
�2 2 1�T /5. Using Eq. �4�, the model state for this student is
�	2 	2 1�T /5.

B. Class model density matrix

As discussed above, for a particular physical concept, a
single student can have a pure �consistent� model state �not
necessarily a correct one� when the student consistently uses
a single model for all expert-equivalent questions related to
the concept, a mixed model state where the student uses
several models �correct and incorrect ones� inconsistently, or
a null model state where no clear models can be categorized
�no known systematic logical reasoning involved in generat-
ing the response�.

For a class probed by a given instrument, each student has
an individual model state. The combined outcomes of the
class contain both individuals’ features of their model states
and the group’s behavior of the students in the class. There-
fore, we are tackling a very complicated system that involves
both individual and group effects. Analyses using scores
alone often fail to provide useful details on the students’ real
understanding of the physics concept �except in the case
when most students consistently give correct answers�. For
example, a low score can be caused by a consistent incorrect
model, calculation errors generated while using a correct
model, random guessing, or a persistently triggered incorrect
model for a student in a mixed model state. These different
situations reflect important information on student under-
standing of physics, but they cannot be distinguished using
an analysis based solely on scores. We introduce here a pro-
cedure we call model estimation that can provide a way to
extract such information.

Using a group of questions associated with a single phys-
ics concept, we can measure and represent the single student
model state with Eq. �4�. In the following, we use the ex-
ample of the force-motion models and the FCI to demon-
strate the model estimation algorithm. The FCI has five
force-motion questions and involves three models, so m=5
and w=3. We can rewrite Eq. �4� as

uk =
1
	5�

	n1
k

	n2
k

	n3
k � , �6�

where ni
k is the number of questions the kth student answered

using the ith model.
We define the single student model density matrix for the

kth student as �w=3�:

Dk = uk � uk
T = 
���

k � =
1

m� n1
k 	n1

kn2
k 	n1

kn3
k

	n2
kn1

k n2
k 	n2

kn3
k

	n3
kn1

k 	n3
kn2

k n3
k  . �7�

Although the single student model density matrix clearly
contains no more information about the student than does the
model vector �all the elements of the matrix are uniquely
determined by the elements of the vector�, the situation
changes dramatically when we sum over all students in the
class. We define the class model density matrix as the aver-
age of the individual students’ model density matrices:

TABLE I. Associations between the physical models and the
choices of the five FCI questions on the force-motion concept.

Questions Model 1 Model 2 Model 3

5 d a, b, c e

9 a, d b, c e

18 b a, e c, d

22 a, d b, c, e

28 c a, d, e b
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D = ��11 �12 �13

�21 �22 �23

�31 �32 �33
 =

1

N
�
k=1

N

Dk

=
1

N · m
�
k=1

N � n1
k 	n1

kn2
k 	n1

kn3
k

	n2
kn1

k n2
k 	n2

kn3
k

	n3
kn1

k 	n3
kn2

k n3
k  . �8�

The class model density matrix retains important structural
information about the individual student models which is
otherwise lost if we only sum over the model vectors �this
will produce the diagonal elements of the density matrix�. By
analyzing this matrix, we can study the features of the mod-
els used by the students in the class.

Now let us consider a population of students with diverse
background. In solving a set of questions on a single con-
cept, students in a class can be in a variety of situations on
using their models. Three common situations are the follow-
ing.

�i� Most students in a class have the same model �not
necessarily a correct one� and are self-consistent in using it.

�ii� The class population uses several different models but
each student only uses one model consistently. Thus the class
of students can be partitioned into several groups each with a
different but consistent model.

�iii� Individual students in the class can each have mul-
tiple models and use these models inconsistently; i.e., the
individual students have mixed model states.

Note that these different situations contain statistical fea-
tures of the population which are intrinsically different from
the probabilistic nature of individual student’s model state.
Corresponding to these different situations, the class model
density matrix will show different structures �see Fig. 3�. As
indicated from Eq. �8�, the diagonal elements of D reflect the
percentage of the responses generated with the correspond-
ing models used by the class. The off-diagonal elements re-
flect the consistency of the individual students’ use of their
models. Large off-diagonal elements indicate low consis-
tency �large mixing� for individual students in their model
use. Empirically, when the ratio between an off-diagonal el-
ement and the multiplication product of the square roots of

the two corresponding diagonal elements is larger than 50%,
the mixing between the two corresponding models is re-
garded as significant.

Using the class model density matrix, we can extract
quantitative information on the distribution of student mod-
els for the class. One convenient method is to perform an
eigenvalue decomposition to extract class model vectors �the
eigenvectors of D� and the eigenvalues. A detailed discussion
of the eigenvalue analysis is given in the Appendix.

The analysis in the Appendix demonstrates that the �th
eigenvalue is the average of the squares of the overlap �dot
product� between the �th eigenvector and the individual stu-
dents’ model vectors. Consequently, the eigenvalue is af-
fected by both the similarity of the individual students’
model vectors and the number of students with similar model
state vectors. Thus, if we obtain a large eigenvalue ��0.65
empirically� from a class model density matrix, it implies
that many students in the class have similar uk’s �i.e., the
class has a consistent population�. On the other hand, if we
obtain several small eigenvalues, it indicates that students in
the class behave differently from one another. Therefore, we
can use the magnitude of the eigenvalues to evaluate the
consistency of a class’s population and the applicability of
the simple form of the model analysis method.

Using an eigenvalue decomposition to analyze the class
model density matrix, we can obtain a quantitative assess-
ment of the structure and popularity of the students’ common
model states. We can evaluate two types of consistency: the
consistency of individual students using different models,
which is reflected by the off-diagonal elements of the class
model density matrix �mixed or pure�, and the consistency
among different students which is revealed by the eigenval-
ues.

As indicated by Eqs. �A5� and �A6�, if there is an eigen-
vector with a large eigenvalue, it contains the dominant fea-
tures of the single student model vectors. We refer to this as
the primary eigenvector. The additional eigenvectors act as
corrections of less popular features that are not represented
by the primary state. When considering the class as a single
unit, a primary eigenvector gives a good evaluation of the
overall model structure of the class. However, if we regard
the class as a composition of individual students, there can
exist interesting details that cannot be extracted with a
simple eigenvalue decomposition due to the fact that the ei-
genvalue method necessarily yields orthogonal eigenvectors.
�It is also a general problem that will be encountered when
attempting to represent the distributive results of a popula-
tion with several definite items �vectors, values, etc.�.�

For example, suppose we have a class that can be divided
into several groups of students, where students in each group
all have similar model states and students from different
groups have significantly different model states. In this situ-
ation an eigenvalue decomposition can give good results for
the following two cases.

�i� When the model states from different groups are nearly
orthogonal �this limits the number of such groups to be equal
to the dimensions of the related model space�, the eigenvalue
decomposition will produce eigenvectors that are similar to
these model states.

�ii� When one of these student groups has a dominant
population, the eigenvalue decomposition will produce a pri-

FIG. 3. Examples of the student class model density matrix: �a�
an extreme case corresponding to the first type of class model con-
dition where everyone has the same physical model �model 1�, �b�
the second type of class model condition where the class consists of
three different groups of students each with a consistent physical
model, and �c� the third type of class model condition where many
students have multiple physical models and are inconsistent in us-
ing these models.
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mary vector, with a large eigenvalue, very close to the model
state held by this dominant group.

In the case when students are different but not “so” dif-
ferent �with a distribution of different but nonorthogonal
model states�, an eigenanalysis will not give appropriate
model states. Rather, it will provide a set of orthogonal
model vectors representing unique features of all the average
students’ model states. In the case that the eigenvalues are
small, a scatter plot of the individual students’ eigenvectors
can suggest whether it might be useful to perform a cluster
analysis, separating the class into distinct populations and
determining the characteristics of those populations. Based
on computer simulations and the analysis of a large-scale
data set �which will be discussed in future papers�, it is sug-
gested that when the eigenvalue of a primary eigenvector is
less than 0.65 and the student model states are mixed, the
students in the class will have a somewhat “flat” distribution
of nonorthogonal model states. In such cases, plotting the
angular distribution of the individual students’ model states
and/or conducting cluster analysis may provide more details
on the population. Still, the eigenanalysis can provide a
simple indicative evaluation of the population when we com-
bine to consider both eigenvalues and eigenvectors in our
data analysis. In the example reported below, the primary
eigenvalue is close to 0.8, which indicates that most students
have similar model states.

C. Representing the class model state: The model plot

In many situations we have encountered, students often
have two dominant models: a correct one and a common
misconception. To conveniently represent and study the
states and changes of student models in this situation, we
construct a two-dimensional graph or model plot to represent
the class use of the two models. For example, suppose we
study the first two models in a three-model situation. A class
model state �an eigenvector of the class model density ma-
trix� v�= �v1� ,v2� ,v3��T can be represented as a point in a
two-dimensional space in which the two axes represent the
probabilities that a representative student in the class will use
the corresponding models over the whole set of expert-
equivalent questions of the probe instrument. The state is
represented by a point �point B in Fig. 4� that we refer to as
the class model point on a plot with P1=��

2 v1�
2 as the ver-

tical component and P2=��
2 v2�

2 as the horizontal compo-
nent.

When the eigenvalue of a class model state is small, the
class model point will be close to the origin. On the other
hand, a state with a large eigenvalue will be close to the line
going through �0,1� and �1,0�, which is the upper boundary
of the allowed region of the model plot. �Since the two co-
ordinates represent probabilities and the sum of the prob-
abilities must be less than or equal to 1, a class point must lie
below the line P1+ P2=1. In addition, since each probability
must be positive, the class point must lie within the triangle
bounded by the points �0,0�, �1,0�, and �0,1�.� In the case
when a class model state vector has small elements on model
dimensions that are not considered �v3� in this case�, which
often occurs, we can make an approximation letting ��

2 �1

−v3�
2 ����

2 . Then the distance between a model point and the
upper boundary can be used to estimate the eigenvalue of the
corresponding model state. Defining d as the distance be-
tween a model point and the upper boundary, this estimation
can be calculated with

�2 � 1 − d	2. �9�

D. Describing model-mixing features

When analyzing student model structures in a case where
the model space is dominated by two models we can repre-
sent the student model states on a two-dimensional model
plot as shown in Fig. 4. In order to describe the different
regions of the plot, we separate the plot by drawing two
straight lines from the origin with slopes equal to 1/3 and 3,
respectively �see Fig. 4�. We also draw the line correspond-
ing to the condition P1+ P2=0.4. With these lines, we parti-
tion the model plot into four regions: the model 1 region,
model 2 region, mixed region, and secondary model region
�model states with eigenvalues smaller than 0.4� as shown in
Fig. 4. When a class has a primary model point in model 1
region �or model 2 region�, it suggests that statistically the
students in the class have similar model states which have a
dominant component on model 1 �or model 2�. When a class
has a primary model point in the mixed region, the students
in the class often have predominantly mixed model states;
i.e., most of the students are inconsistent in using the differ-
ent common models. The secondary model region represents
model states with small eigenvalues, which reflect less popu-
lar features of the class behavior. In most cases we have
studied, there is one primary model state with an eigenvalue
3–4 times larger than the second largest eigenvalue. In these
cases, the primary model state alone provides a good over-
view of the class’s model state.

The model plot can visually present much information
about the student model states on the same graph �e.g., the
consistency of the class population, the consistency of the
individual students in the class, and the types of models
used�. We can also put the pre- and post-model states from

FIG. 4. Model regions on model plot. The model 1 �model 2�
region represents comparatively consistent model states with domi-
nant model 1 �model 2� components. The mixed model region rep-
resents mixed model states.
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different classes together on the same plot, making it much
easier to see the patterns and shifts of the different class
model states.

V. MODEL ANALYSIS OF FCI DATA

Using the model estimation method, we analyzed FCI
data from the pre-post testing of 14 introductory mechanics
classes �Physics 161� at the University of Maryland �data
collected by J. M. Saul at the University of Maryland
�UMd��. The students were mostly engineering majors. All
the classes had traditional lectures three hours per week and
were assigned weekly readings and homework consisting of
traditional textbook problems. All of the students also had
one hour per week of small-group �N�30� teaching-
assistant- �TA-� led recitations. In half of the classes recita-
tions were traditional TA-led problem-solving sessions �stu-
dents asking questions and the TA modeling solutions on the
board�. The other half received recitations taught with tuto-
rials �McDermott & Shaffer, 1998�. These sessions consisted
of students working together in groups of three to five on
research-based guided-discovery worksheets. The work-
sheets often used a cognitive conflict model and helped stu-
dents develop qualitative reasoning about fundamental phys-
ics concepts. In the following analysis, we use the five FCI
questions on the force-motion concept as an example to dem-
onstrate the model estimation algorithm.

Using the item-based modeling scheme in Table I and
following the procedures in Eqs. �2�–�8�, we calculated the
average student initial model state on force and motion by
combining all classes �778 students�. The results are shown
in Table II. As we can see from this table, the eigenvalues for
the class states corresponding to the null models are very
small. This indicates that most students use either the correct
expert model or the incorrect naive model and the model
space defined from the qualitative research matches well
with this population. In addition, the primary class model
states �states with the largest eigenvalue� of all classes have
eigenvalues around 0.8. Therefore, the primary state alone
can give a fairly good description of the class. Using the
results in Table II the class model states on the force-motion
concept are displayed on a model plot spanned by model 1
�expert model� and model 2 �naive model� �see Fig. 5�. For
each type of class, we plot the class primary model state. The
initial states of both types of classes are nearly the same and
can be interpreted as that before instruction most students in
the two classes consistently use the incorrect model on all
the questions related to force and motion.

After instruction, the model state of the tutorial classes
indicates that most students use the correct model rather con-
sistently. On the other hand, the primary model state of the
traditional classes indicates a mixed model state, which
shows that most students in the class are inconsistent in us-
ing their models. Since the model state is nearly a perfect

TABLE II. Results of class model density matrices and class model states on the force-motion concept
with data from UMD students.

Tutorial Pre Post

Density
matrix �0.27 0.23 0.02

0.23 0.69 0.07

0.02 0.07 0.04
 �0.66 0.28 0.03

0.28 0.31 0.02

0.03 0.02 0.03


Eigenvalues 0.80 0.17 0.03 0.82 0.15 0.03

Eigenvectors �0.40

0.91

0.09
� �− 0.92

0.39

0.07
� � 0.03

− 0.12

0.99
� �0.87

0.48

0.05
� �− 0.49

0.87

0.02
� � 0.03

0.04

− 0.99
�

Traditional Pre Post

Density
matrix �0.27 0.22 0.03

0.22 0.68 0.08

0.03 0.08 0.05
 �0.46 0.25 0.03

0.25 0.50 0.05

0.03 0.05 0.04


Eigenvalues 0.79 0.17 0.04 0.74 0.23 0.03

Eigenvectors �0.40

0.91

0.12
� �− 0.92

0.39

0.03
� � 0.02

0.12

− 0.99
� �0.67

0.73

0.08
� �− 0.74

0.67

0.06
� � 0.01

0.10

− 0.99
�
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mix �half and half�, a particular student is likely to use the
correct model on half of the questions and use the incorrect
model on the other half of the questions. This result provides
a piece of evidence that validates our treatment of context
dependence with the representation of mixed model states in
a population and also indicates that the five FCI questions on
force and motion are well designed and are appropriate for
the assessment of students’ conceptual knowledge concern-
ing context dependence.

VI. COMPARING MODEL ANALYSIS AND FACTOR
ANALYSIS

Factor analysis is one of the statistical methods widely
used in educational and psychological research. To compare
model analysis and factor analysis, we should understand to
which extent factor analysis is applicable. In other words,
what should one use factor analysis for?

Basically, factor analysis extracts information from a cor-
relation matrix usually built from students’ scores on differ-
ent test items. The factors �eigenvectors� extracted from a
correlation matrix provide a measure of how different test
items may be related in terms of consistencies among student
responses. Factor analysis is not designed to provide the rea-
sons for such relations.

In a test instrument, researchers usually design several
equivalent questions on a single concept with varying con-
textual features. This represents the experts’ view on how
test items are clustered. However, due to the context depen-
dence of learning, the different contextual features of the
equivalent questions may cause the students to respond dif-
ferently. In such cases, there will be low-consistency among

students’ scores to the cluster of questions that the experts
would consider equivalent.

The interpretation of this result depends on the research-
ers’ model about student learning. If one considers that the
consistency among students’ scores reflects their understand-
ings of the test items, the result can lead researchers to think
that from the students’ point of view, those items which
should be grouped together in the experts’ view are actually
not. However, it can be argued that such an interpretation is
valid only when students are in pure model states so that they
are consistent in using their knowledge in different but
equivalent contexts. When students have mixed model states,
the low consistency among students’ scores on different
equivalent items is primarily caused by the context depen-
dence of their knowledge. Therefore, in such cases, the
analysis of the correlation matrix will not be able to identify
a strong factor, which is evident from the results in the study
by Huffman and Heller.40 Let us consider an idealized ex-
ample to demonstrate how the two methods deal with the
issue of context dependence.

Suppose we give four multiple-choice questions to a class
of 100 students �m=4, N=100� and that all four questions
probe the understanding of a single physics concept that
might activate one of two models: model A and model B
�w=2�. Consider two situations.

Case 1. All students in the class are self-consistent. Half
of them use model A on all four questions, and the other half
use model B on all four questions.

Case 2. All students are equally mixed between model A
and model B: They use model A and model B equally, so
each student applies model A to two questions and model B
to the other two, but the choices of which questions corre-
spond to which model is random.

In case 1, the results from both methods are calculated in
Table III. As we can see, the results from model analysis
show two states with equal weights, indicating that the class
has two groups, each of which consistently use one of the
models. The results from factor analysis give a single factor,
which shows that all the students are consistent. The result
from factor analysis does not tell in which way the students
are being consistent. �This can, however, be supplemented by
the information about the class scores.�

The results for case 2 are displayed in Table IV. For both
methods, eigenvectors with eigenvalues equal to zero are
omitted. Since the students are assumed to be equally mixed
with model A and model B, the probability for a single stu-
dent to use either model A or model B is equal for all ques-
tions. As we can see, the results from model analysis indicate
a single perfectly mixed class model state with 100% occu-
pancy �the eigenvalue equals 1�. On the other hand, since the
students are inconsistent in answering the questions, factor
analysis gives a randomlike correlation between different
questions and shows no dominant factors. Such a situation is
often interpreted as if there is no factor in the data. In terms
of consistency among students’ scores, both methods pro-
duce the correct results—students’ scores are not consistent.
However, in the second case, it is obvious that students in the
class are behaving similarly in terms of their model states;
they all have an identical mixed model state. This informa-
tion can only be retrieved from model analysis.

FIG. 5. Model plot of student class model states on force and
motion with FCI data from the University of Maryland. For each
type of class, we plotted, for pre- and post-results, the first two class
model states �states with the first and second largest eigenvalues�.
The two arrows represent the shifts of the first model states the for
pre- and post-results of tutorial �Tut� and traditional �Trd� classes.
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In the two hypothetical situations, we can see that both
methods respond well to the consistency of students’ scores.
The method of model analysis goes beyond the score consis-
tency and represents the student’s knowledge state in a
model space. The advantage of using model analysis benefits
from the fact that it uses a multidimensional representation
for the student’s knowledge state and that it is based on the
fundamental assumption of learning being context depen-
dent. Therefore, model analysis may better address issues
such as context dependence in assessing conceptual knowl-
edge.

Besides factor analysis, there are many quantitative mod-
eling methods developed for education research including
structural equation modeling and item response theory.41,42

These methods assume certain latent constructs responsible
for students’ responses on different test items and rely on the
measure of consistency among student responses to extract
such latent constructs. This does not respond well to the
context dependence of student knowledge and works only
when students have pure model states. When students have
mixed model states, the low consistency among students’
responses often causes failure in detecting any latent con-
structs. In such cases, the results do not yield much insight
into the students’ cognitive states.

Model analysis method is fundamentally different. Unlike
correlation-based analysis methods, which usually attempt to
draw the dimensions of student understanding from test data,
model analysis puts information from qualitative research
into the analysis to determine the mental space. This space is
then used to measure and represent the states of student
learning in terms of probabilities for the students to apply
different knowledge in a range of contexts.

From an information-processing point of view, what re-
searchers categorize as signal or noise depends on the under-
lying model of cognition. The context dependence of student
knowledge will behave as a random process in the observers’
viewpoint with respect to the types of knowledge used by
students in changing contexts. In correlation-based data
analysis, this randomness is often regarded as a source of
uncertainty causing low-consistency in responses. In model
analysis, such randomness is treated as signal from the data
that represents important features of the student knowledge
states—the mixed model states.

VII. SUMMARY AND DISCUSSION

In this paper, we have introduced model analysis, a
method to analyze student’s knowledge states in large classes
with multiple-choice questions. It begins with the cognitive
observation that students are often inconsistent in their use of
mental models in situations that an expert would consider
equivalent. We suggest that the best way to treat this situa-

TABLE III. Results from model analysis and factor analysis for
a class having two equal populations each with a consistent model.

Model analysis Factor analysis

Density matrix
1

2
�1 0

0 1
� Correlation

matrix �
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


Eigenvalues

�1
2 =

1

2
, �2

2 =
1

2

Eigenvalues �1
2=4,

� j
2=0 �j=2,3 ,4�

Class model
states �1

0
�,�0

1
� Factors

1

2�
1

1

1

1
�

TABLE IV. Results from model analysis and factor analysis for a class having a single population with an
equally mixed model state.

Model analysis Factor analysis

Density
matrix 1

2
�1 1

1 1
� Correlation

matrix �
1 − 0.33 − 0.33 − 0.33

− 0.33 1 − 0.33 − 0.33

− 0.33 − 0.33 1 − 0.33

− 0.33 − 0.33 − 0.33 1


Eigenvalues �1
2=1, �2

2=0 Eigenvalues �1
2=1.33, �2

2=1.33,
�3

2=1.33, �4
2=0

Class model
states 1

	2
�1

1
� Factors

1

2�
1

− 1

− 1

1
�,

1
	2�

0

1

− 1

0
�,

1
	2�

− 1

0

0

1
�,

− 1

2 �
1

1

1

1
�
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tion is by considering the student as being able to simulta-
neously possess multiple models with a distribution of prob-
abilities for the activation of the different models. Model
analysis allows the assessment on the probabilities of stu-
dents’ use of these alternative models. The results can be
used to analyze student understanding and/or the features of
the measurement instruments.

Model analysis presents a way to integrate the qualitative
knowledge gained from student interviews with the quantita-
tive analysis of multiple-choice instruments. The complete
process of using this method is recapped below.

�i� Through systematic research and detailed student inter-
views, common student models and the contextual features
of questions that can activate those models are identified and
validated so that these models are reliable for a large popu-
lation of students with a similar background.

�ii� This knowledge is then used in the design of a
multiple-choice instrument. For each concept topic, we need
multiple �usually three to five� equivalent questions designed
with different contextual features so that we can measure if a
student’s model state is mixed or pure. In each question, the
distracters are designed to capture the common student mod-
els and the validity of the questions and the distracters is
validated through research.

�iii� With the measurement data, one then classifies a stu-
dent’s responses by corresponding common models and cre-
ates a state in the model space representing the student prob-
abilities in applying the different common models. The
individual student model states are used to create a density
matrix, which is then summed over the class. The eigenval-
ues and eigenvectors of the class density matrix give infor-
mation about the state of the class’s knowledge.

In constructing a measurement of student conceptual un-
derstanding, there is often a “communication” problem; stu-
dents can use the same terminology �or a statement� as used
by an expert but with a different understanding. A simple
word or a statement often fails to extract the actual underly-
ing reasoning, which usually can only be obtained by ana-
lyzing how students apply their knowledge. Model analysis,
although a quantitative tool, relies heavily on qualitative
methods. By conducting systematic qualitative research, in-
cluding careful validation of the test instruments, it is ex-
pected that the identified student models reflect the majority
of different types of student understandings and that the
multiple-choice instruments do not contain significant com-
munication problems—the distracters are designed to reflect
not a simple use of a word or statement but rather the results
of students’ application of their models. That is, we use in-
terviews to identify the students’ actual reasoning common to
a large population and use research-based multiple-choice
instruments, with the algorithms in model analysis, to mea-
sure the students’ use of these popular types of reasoning in
learning.

The combination of the two methods can partially solve
the communication problem and yet provide an effective and
reliable tool to probe large classes. Once a reliable package
is developed, it can be applied in instruction to obtain feed-
back from students with comparatively rich information on
the students’ actual understandings.

It is often argued that by putting in researchers’ knowl-
edge of student learning in constructing the representation

framework, we limit the framework for students’ possible
models. In model analysis, we always include a null model
space to include possibilities that may be missing when the
test is designed. In early stages of research, model analysis
could be used with open-ended questions and the results
classified by common models using phenomenography.32 If a
large null model element is identified in the analysis, it im-
mediately alerts researchers that the population being tested
may have possible models that are not understood and sug-
gests the need for further research. Therefore, model analysis
can also be used to evaluate the features of the instruments as
part of a cyclic process of research, modeling, and develop-
ment.

The results from model analysis provide more explicit
information on improving instruction than score-based
analysis. With the knowledge of students’ model states and
changes of such states with specific contextual features in
different equivalent questions, instructors can see more di-
rectly the possible causes of the student difficulties and de-
velop better instructional strategies to help students.

Most analyses of the results from the FCI and FMCE
compare the pre- and post-test scores of a class and measure
an overall “efficiency of instruction” by calculating the frac-
tion of the possible gain g attained by the class.43 While
giving a global overview of teaching effectiveness, such a
result blends together a variety of distinct learning issues and
makes it difficult for an instructor to draw any detailed con-
clusions about what in his or her instruction was effective or
ineffective. This limits the utility of such tests for providing
specific guidance to a teacher or researcher for the reform of
instruction.

In educational statistics, researchers employ advanced
methods such as factor analysis to extract possible latent
model-like traits �factors� that underlie students’ responses.
However, most of these methods assume consistency in the
students’ activation and application of conceptual knowledge
and rely on such consistency to extract latent cognitive fac-
tors. In addition, many of these methods rely solely on score-
based data. These limitations can lead to difficulty in extract-
ing explicit information on student conceptual models. For
example, a factor analysis of FCI results leads to the conclu-
sion that there are no distinct factors, other than the obvious
cluster that refers to the conceptually distinct Newton’s third
law.40

From a more general methodological perspective, at-
tempts to extract possible latent cognitive factors from
purely test data have fundamental difficulties. In a test situ-
ation, there are many hidden processes that can lead to a
student’s giving a particular type of response. When analyz-
ing test data, researchers need to consider many potential
causal pathways for the inferential analysis as well as the
issue of context dependence. One way or the other, assump-
tions have to be made to reduce the complexity of the sys-
tem. Therefore, results of qualitative research have to be
used as the basis for the theoretical assumptions to be em-
ployed in the data analysis.

Our approach combines both qualitative and quantitative
methods. It assumes that the most commonly used mental
models are identified through extensive qualitative research.
These known factors can then be mapped onto the choices of
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a multiple-choice test design based on results from qualita-
tive research. The mental states of the individual students
tend to be mixed, especially when they are making a transi-
tion from an initial state dominated by a naive incorrect
model to an expert state. Model analysis allows us to take a
measure of the degree of confusion in the student’s state.
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APPENDIX: INTERPRETATIONS OF THE EIGENSTATE
ANALYSIS OF D

Since D is symmetric and all data are real and non-
negative definite, the eigenvalues are all real non-negative
numbers, which we denoted by �1

2 ,�2
2 , . . . ,�w

2 . Define the
eigenvectors of D as v� �a column vector� where �
=1, . . . ,w are the indices for different class model states.
Then the matrix of eigenvectors can be written as

V = �v1, . . . ,v�, . . . ,vw� .

This matrix transforms D into a diagonal form. For a
three-dimensional model space we can write

VDVT = ��1
2 0 0

0 �2
2 0

0 0 �3
2  .

Now let us see how the information of the individual stu-
dents’ model states are stored in D and what can be learned
from the eigenvalues and eigenvectors. Consider a class with
N students. The class model density matrix can be written as

D =
1

N
�
k=1

N

Dk =
1

N
�
k=1

N

uk � uk
T. �A1�

Using the eigenvectors and eigenvalues, D can also be
written as

D = �
�=1

w

��
2 v� � v�

T. �A2�

Apply this to an eigenvector v�, we can write

Dv� =
1

N
�
k=1

N

uk � uk
Tv� = ��

2 v�. �A3�

Define a�k as the agreement between the kth student’s
model vector uk and v�, the �th eigenvector of D. We have

a�k = uk
Tv� = v�

Tuk. �A4�

Then Eq. �A4� can be rewritten as

Dv� =
1

N
�
k=1

N

uk�uk
Tv�� =

1

N
�
k=1

N

a�kuk = ��
2 v�,

which yields

v� =
1

��
2 N

�
k=1

N

a�kuk. �A5�

Thus an eigenvector of D is a weighted average of all the
individual student model vectors with weights equal to the
agreements between the eigenvector and the single student
model vectors.

Therefore, the class model states represented by these
eigenvectors are the set of states that reflect the salient fea-
tures of all the individual student model vectors.

If we left multiply Eq. �A5� by its conjugate, we then
have

v�
Tv� =

1

��
2 N

�
k=1

N

a�kv�
Tuk =

1

��
2 N

�
k=1

N

a�k
2 = 1

and

��
2 =

1

N
�
k=1

N

a�k
2 . �A6�

This result indicates that the �th eigenvalue is the average of
the squares of the agreements between the �th eigenvector
and the individual students’ model vectors. Consequently, the
eigenvalue is affected by both the similarity of the individual
students’ model vectors and the number of students with
similar model state vectors. Thus, if we obtain a large eigen-
value from a class model density matrix, it implies that many
students in the class have similar single student model state
vectors �the class has a consistent population�. On the other
hand, if we obtain several small eigenvalues, it indicates that
students in the class behave rather differently from one an-
other. Therefore, we can use the magnitude of the eigenval-
ues to evaluate the consistency of a class’ population.

Further details and developments of model analysis meth-
ods can be found at www.modelanalysis.net
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