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Mathematical learning models that depend on prior knowledge and instructional strategies
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We present mathematical learning models—predictions of student’s knowledge vs amount of instruction—
that are based on assumptions motivated by various theories of learning: tabula rasa, constructivist, and
tutoring. These models predict the improvement (on the post-test) as a function of the pretest score due to
intervening instruction and also depend on the type of instruction. We introduce a connectedness model whose
connectedness parameter measures the degree to which the rate of learning is proportional to prior knowledge.
Over a wide range of pretest scores on standard tests of introductory physics concepts, it fits high-quality data
nearly within error. We suggest that data from MIT have low connectedness (indicating memory-based learn-
ing) because the test used the same context and representation as the instruction and that more connected data
from the University of Minnesota resulted from instruction in a different representation from the test.
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I. INTRODUCTION

The stimulus for this paper was trying to understand what
learning mechanism(s) could lead to Hake’s finding' that for
prescores and postscore on “concept tests”” in Newtonian
mechanics, 62 different classes tended to have similar aver-
age normalized gain that strongly depended on the type of
instruction (traditional vs interactive) but insignificantly (cor-
relation +0.02) on the prior knowledge of the class, as mea-
sured by the preinstruction score. In particular, why should
the score increase from pretest to post-test be proportional to
what the students initially do not know, rather than being the
same for all students, or even increasing with their prior
knowledge?

The central focus of this paper is to construct mathemati-
cal learning models that yield expressions for student knowl-
edge vs instructional time based on clear assumptions that
are motivated by various learning theories, then to find
which model best fits observed student learning data—in par-
ticular, the variation of learning with the amount of students’
prior knowledge. The aim of this paper is thereby to provide
a quantitative tool that allows the parametrization of mea-
sured learning data (e.g., from pretesting and post-testing
before and after instruction) in terms of a new parameter (in
addition to the normalized gain) that connects with learning
theory discussions. We hope that this work will provide a
way to determine what type of learning is actually occurring,
thereby allowing both “learning type” and “amount learned”
to be inferred from assessments made before and after a pe-
riod of instruction.

Our key insight is that existing learning theories suggest
that the rate of learning should have significantly different
dependences on the student’s prior knowledge—what he
does or does not know when he encounters each new thing to
be learned. The first such theory is tabula rasa, the Aristote-
lian idea popularized by Locke that the mind can be seen as
a blank slate which is imprinted with knowledge initially
through experience (and later through reasoning as well).?
The second, constructivism, is the notion that new knowl-
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edge is “constructed” from associations involving prior
knowledge*’ and thus that increased prior knowledge
should positively affect the rate of learning. Finally, tutoring
is one-on-one expert mentoring that is tailored to the particu-
lar student, e.g., as practiced by Socrates.®”

These assumptions lead to quite different mathematical
expressions for a student’s rate of learning. We solve the
resulting differential equations to yield predictions for the
student’s knowledge after a given amount of instruction. For
several large college classes, we then show that based on
preinstruction test scores (“pretest”), a hybrid learning model
with a new “connectivity parameter” fits postinstruction test
scores'? nearly within error, while other models are excluded
with certainty.

The resulting inferences about the connectedness of the
learning to prior knowledge are in accord with expectations
from studies of knowledge transfer:!! memory-based learn-
ing (i.e., transfer from instruction to assessment) is inferred
when instruction is based on questions similar to those on the
test, whereas more connected learning is inferred when in-
struction uses a different representation than the test.

Our models are applicable to already accumulated pretest
and post-test data, to year to year test results that are cur-
rently being accumulated in many school systems, and as a
byproduct of data collected in online learning systems. They
therefore offer a new way to make inferences about the type
of learning that is occurring.

II. MODELS

The dependent variable in our models is the student’s
knowledge after a specified amount of instruction. We divide
the test domain, T, into a fraction K;(z) that is known (i.e.,
tests “correct”), and what is unknown, U(r). Here, t is the
amount of instruction (i.e., teaching) the student has had in
the test domain. The variable ¢ is the amount of teaching or
instruction that has occurred normalized by the total knowl-
edge in the test domain and can exceed unity (e.g., the
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teacher can review a material so that a particular knowledge
nugget is taught more than once). There is also a “sticking
coefficient” a, which is the probability that something taught
sticks in the student’s mind when all other conditions for
potential learning within that particular model are present. In
practice, only the product ar appears in the models; we vary
at to fit pre-post-testing data.

Each of our models starts with assumptions that yield a
particular differential equation for dU;(r)/dt, the rate of
change of unknown knowledge in the test domain. dU(r)/dt
is the negative of the learning rate since U;(f)=1-K(z). The
differential equations for U;(f) are simpler than those for
K (1), in part because instruction is generally considered as
teaching students what they do not already know. For each
learning model, we give an analytic solution for K;(r) [and
therefore for U (1)].

Typically, our models will be applied to data consisting of
prescores and postscores on concept tests for a class of stu-
dents who undergo the same amount of instruction, #;,,.
Each student has a different initial knowledge (pretest score)
K=K (t=0) (which could be attributed to prior instruction
at negative 7). Each different learning model then gives
K(t;,s), @ prediction of the student’s post-test score. Such
preinstruction and postinstruction scores are generally (at
least in physics education research) summarized in terms of
the “normalized gain,”!"'>~'* which the model predicts to be a
function of the pretest score Kyy=K;(r=0),

g(K70) = [Kp(tins) = Krol/[1 = Kpp]. (1)

The normalized gain is the fraction of the unknown (i.e.,
wrong) knowledge on the pretest (1-Kp,) that is learned

(i.e., correct) on the post-test after an amount of instruction

15-20
z instr*

A. Pure memory model

Our “pure memory model” is motivated by the tabula rasa
theory of learning. The model assumes that the student’s
memory (the slate) is blank in the unknown fraction of the
test domain, Uy(f)=1-K,(r). The assumptions of the pure
memory model are the following:

(1) The instructional process sends out knowledge nug-
gets uniformly distributed in all respects over the test do-
main.

(2) Obviously, only the fractions U/(t) of these are un-
known and hence can be learned.

(3) The sticking probability of the nuggets is a for all
students.

(4) a does not have a systematic dependence on K or U.

This model applies to rote memorization since assumption
(3) means that the probability of remembering the presented
nuggets is independent of the student’s other knowledge and
recent learning history.

With these assumptions,

dUT(t)/dt == a’memoryUT(t) ’ (2)
which has the solution
UT(t) = UT(O)eXp[_ amemoryt]’

leading to
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KT(I) =1- (1 - KTO)eXp[_ amemoryt]v (3)

g(KTO) =1- eXP[— amemorytinslr]- (4)

The most important prediction of the pure memory model is
that g is independent of the pretest score, Ky Thus, this
model fits Hake’s data for different classes undergoing the
same type of pedagogy.

We will subsequently refer to this model as the pure
memory model to emphasize that it is based on the math-
ematical assumption of independence of learning on prior or
current knowledge. The pure memory model has the same
mathematical form as some Pavlovian learning models, such
as stimulus sampling theory?' and the Rescorla—Wagner
model,”> which model the change in behavior of subjects
across repeated trials (instruction) at a task. Similar math-
ematics occurs in some stochastic models for learning.?? For
example, Eq. (3) is similar to Hull’s “habit strength,”?* where
ppemory 15 the “learning rate parameter” and ¢ is the “number
of trials.” The assumptions behind all these models are much
sharper than the many ideas associated with tabula rasa and
generally boil down to the idea that subsequent instruction
always has the same fractional learning effect (called “sta-
tionarity” in psychology and “current knowledge state” in
our model).

B. Simple connected model

Our simple connected model is motivated by the construc-
tivist view that students learn new knowledge by construct-
ing an association between it and some prior knowledge.
This implies that the more prior knowledge one has, the
faster learning will occur and, conversely, that if the relevant
knowledge needed for the construction is unknown, then
learning will be slowed. The learning rate is now propor-
tional to three factors: the probability U;(¢) that the knowl-
edge nugget strikes an unknown region, the probability K;(z)
that the appropriate connecting knowledge is already known,
and the probability that the nugget will stick (i.e., the asso-
ciation will be constructed), @puneciea- The extra factor Ky (z)
in the simple connected model reflects that the learner must
possess the existing knowledge with which to connect an
unknown knowledge nugget in order to learn it. [Our simpli-
fying assumption is that one and only one such connection to
knowledge within the test domain is needed; otherwise, K(r)
would be raised to some power.] The model also makes the
four assumptions of the pure memory model above, giving

dUT/dt == aconnectedUT(t)KT(t) == aconnectedUT(t)[l - UT(t)]’

(5)
which has the solution
1
K (t)=
T( ) 1+ (1 - KTO)eXp[_ awnnecledt]/KTO
(a logistic function), (6)
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K TO(exp [ a’connectedt instr] -1 )
( 1= Kﬂ)) + Kﬂ) exp[ aconnectedtinstr]

Interestingly, this model would apply to classes that receive
instruction solely by peer to peer interactions involving ran-
dom pairs of students if one assumes that learning occurs if
and only if one student knows the answer to the given ques-
tion and the paired student does not (and there is a uniform
probability >% that the “right” rather than the “wrong” stu-
dent’s view will be adopted by both). Under these assump-
tions, the overall class learning rate is proportional to K
X U. (Typical applications of peer instruction are followed
by instructor review or clarification and do not fulfill this
criterion.)

Up to this point, we have assumed that the knowledge
with which each new nugget must be connected lies in the
test domain, is generally implicit in constructivist theories.
This could be verified by research showing that an indepen-
dent (of the pretest) test of domain knowledge correlates
with normalized gain, but we do not know of any such re-
search.

On the other hand, it has been found that normalized gain
scores correlate with the Lawson test> and also with the SAT
Math scores.?® This implies that the learning rate is propor-
tional to prior knowledge external to the test domain,

K, viernai» Tather than with K;(1),

dUT/dt == Qcomn extemalUT(t)Kexzemal» (8)

8(Kpp) = ()

with the solution

KT(t) =1- (1 - KTO)eXp[_ X conn extemalKextemall]’ (9)

g(KTO) =1- eXP[— Xeonn extemalKextemaltinstr]' (10)

Since K, yepma 18 €xternal to the testing (and instruction) do-
main, it does not increase with instruction. Thus, the func-

Kt;}lernal(t) =1=

(1 - KTO)[amemorv(l - ﬁ) + aconnectedﬁ]
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tional dependence on ¢ is the same as the pure memory
model, except with a learning probability, @,ep,. that de-
pends on K, If Koyrernar 1S known (e.g., from adminis-
tration of a test on the enabling external knowledge), that
value can or should be substituted for K,,,,.; in Eq. (8).
Lacking such information, it is reasonable to take K, emma
=Kyo. This assumption may be justified either by assuming
that, prior to instruction, internal and external knowledge are
both proportional to the “general knowledge” of the student
or by assuming that the students have had equal instruction
in the domain previously and that those with higher relevant
external knowledge have learned more and have a higher K
in proportion to K, e mar-

C. Connectedness model

The pure memory and simple connected models represent
ideal cases; obviously real learning can involve some learn-
ing of each type. (Indeed, some claim that tabula rasa in-
volves some connected learning once the blank slate starts to
fill or that constructivist learning starts with memory.) There-
fore, we now introduce a model that interpolates between
(and even beyond) the two pure models, being pure memory
for =0 and simple connected for S=1. We call S the con-
nectedness parameter because it is a measure of the degree
of connected learning. In this model, a fraction B of the
learning is connected, while the remaining (1-g8) of the
learning is assumed to be pure memory,

dUT/dt == UT(I)[aconnectedﬂK(t) + a’memory(l - B)]9
(11)

The knowledge K(r) connected to in Eq. (11) can be either
K(t) (internal) or K,,,,,,. (external to the test domain) lead-
ing to two different results for student post-test score and
normalized gain,

(1 - KTO) aconnectedﬁ + [amemory(l - B) + KToacomwcted:B]eXp{[amemory(1 - :8) + aconnectedlg]t} |

exp{[amemory(l - B) + amnnectedﬁ]tinstr} -1

(12)

internal,
K =
8 (K7o) - Kp

amemorz(l - :8) +K
70
aconnectedﬁ

K5 (1) = 1 = (1 = K70)exp{= [ @pemory(1 = B)
+ aconnected:BKexternal] t} > ( 1 4)

gextemal(KTO) =1- exp{— [a'memor)'(l - ,8)

+ acnnnectedBK extemal] 14 instr} . ( 1 5)

) (13)

+ exp{[amemory(l - B) + aconnectedﬂ]tinstr}

D. Tutoring model

By our definition, a perfect tutor provides instruction
based on complete knowledge of what the tutee does and
does not know. The key point is that the tutor need not waste
time reinstructing what the tutee already knows (as must a
classroom instructor) and therefore can impart knowledge at
the student’s maximum assimilation rate k, (perhaps slightly
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o

-7 =~ Simple Connected-Internal
— Pure Memory
=== Tutor

FIG. 1. (Color) Predictions of knowledge K(¢) from our three
“pure” models. We have assumed that k,=a,,..0ry= Xconnecrea’ 2
which matches the learning rates of simple connected and pure
memory models at t=0 (where Kry=0.5). The learning rate is pro-
portional to the slope. Thus, the tutoring model educates fastest
everywhere, even for <0 (i.e., before the pretest). The simple
connected-external model (not shown) has the same time depen-
dence as the pure memory model (although it differently scales
depending on Kextemal)'

reduced because the tutor has to spend some fraction of time
ascertaining what the tutee knows). The assumption that the
tutee’s learning rate is independent of K(¢) and U(¢) is justi-
fied even if the student actually learns connectedly because
the tutor can help the tutee connect each new knowledge
nugget with something the tutor knows that the tutee already
knows. Therefore, this model is characterized by a uniform
rate of learning,

dUdt=—k,, (16)
with the solution
K(t) = k(1 = 1), (17)
implying
§(Kpo) = (k,t)/[1 = K. (18)

According to this model, a student can learn a finite test
domain in a finite time; therefore, we additionally restrict
Kr<1.

This model should apply to self-tutoring on a task such as
learning the capital cities of all the United States where the
student can readily determine whether he knows each piece
of knowledge. If the student learns what he does not already
know connectedly, this model does not apply (because, un-
like the perfect tutor, he does not know what to connect the
new knowledge to) (Fig. 1).

E. Discussion of models

Mathematical details aside, the differences between the
models obviously follow from their motivating philosophies.

PHYS. REV. ST PHYS. EDUC. RES. 4, 010109 (2008)

In tabula rasa as idealized in the pure memory model, the
student is simply memorizing some of the presented infor-
mation without connection to what he already knows; his
absolute learning rate slows as his knowledge increases be-
cause more and more of the instruction addresses what he
already knows. Constructivist theories insist that new knowl-
edge must be associated with existing knowledge and, there-
fore, students ought to learn relatively faster when they have
more knowledge—this is expressed in the connectedness
model by a higher connectedness parameter implying faster
learning when there is more prior knowledge to connect
with. The ideal tutor can direct the instruction so that it al-
ways addresses what the student does not yet know (and if
necessary connect it with what the tutor already knows the
student does know), hence tutoring results in the highest
learning rate, with its most significant advantage being when
the student has learned most of the knowledge in the domain.

Our first three models are connected with usual prepost
test analysis by noting that the class-average normalized
gain, equal to 1—exXp[~@emortinsy)> 18 the usual measure of
the overall amount of learning. The connectedness coeffi-
cient B parametrizes the dependence of learning (transfer) on
prior knowledge as measured by the systematic dependence
of g on prescore. If changes in instruction result in a decrease
in the measured connectedness parameter, this is an indica-
tion that students are now learning using more memory
rather than some process of relating the instructional infor-
mation to what they already know.

The tutoring model indicates that perfect tutors outper-
form other instructional methods by a higher margin at high
prescores since conventional instruction wastes much time
teaching what is already known. Hence, tutoring should be
by far the best instructional method for those with a high
initial level of knowledge. The use of one-on-one apprentice-
based learning for graduate research students, craftspeople,
and complex skills such as hunting and gathering seems to
acknowledge this.

III. DATA

In order to see whether our models can represent reality
and allow us to draw conclusions about it, we apply them to
concept test scores for students in single classes, a sharp test
of the models because all students receive the same instruc-
tion. The fitted data are for large classes and may be consid-
ered “high quality” from the standpoint of educational
studies—even binned into six to ten bins, relative errors are a
few percent, and fits to one data set give parameters excluded
for another with astronomically small p values (e.g., p
< 107'%). They therefore provide a stringent test of the mod-
els’ ability to fit high-quality data.

The MIT data are from two versions of the largest re-
quired introductory calculus-based mechanics class (N
~400) at MIT. (This class is not taken by the most skillful
~35% or the least skillful ~10% of freshmen, who select
other options.) The 2003 MIT class used the traditional
lecture-recitation format, while the 2005 MIT class used stu-
dio format. The studio format utilized both peer instruction
(five to ten concept questions per week) and group problem

010109-4



MATHEMATICAL LEARNING MODELS THAT DEPEND ON...

solving of typical multipart problems. MASTERINGPHYSICS?’
which has been shown to impart some conceptual
knowledge?® was used in both MIT classes, but somewhat
more extensively in 2003 than 2005.

The University of Minnesota (UMn) data are from several
successive years of the corresponding course at the UMn and
were given to us by Henderson et al.?® These classes utilized
group solving of context-rich problems>3%3! to impart con-
ceptual knowledge. UMn used the FCI??> and MIT used the
MBT,*? both concept tests composed by members of the Ari-
zona State University educational research group. The MBT
was given to MIT students because it (but not the FCI) cov-
ers energy and momentum, contains some quantitative prob-
lems, and is designed for students with prior formal training
in mechanics which almost all MIT students have.

With statistical certainty, the MIT data imply that B is
close to 0. Taking both classes together suggests that it is
significantly below 0, i.e., that normalized gain slightly de-
creased with increasing prescore. This would be the expected
deviation from pure memory-based learning if the “pass/no
record” grading of this required course encouraged students
with high prescores to exert less effort and/or students with
low prescores to exert more. We have independent evidence
of such behaviors (e.g., top students doing less homework
near the end of the term and bottom students going to special
tutorials). Granting this systematic effect, we conclude that
the MIT data are consistent with the pure memory model,
suggesting that memory-based learning predominates.

The fit to the UMn data, on the other hand, has S
=0.45=*0.04, which implies a very significant amount of
connected learning. Although the connectedness-external
model fit of the UMn data lowered the value of the reduced
chi-squared from 1.54 to 1.19 relative to the connectedness-
internal model, we do not regard this improvement as sig-
nificant since different bin sizes have been observed to
change the reduced chi-squared by up to t% or so. (Further-
more, the best fits using these two models differ only in the
outermost bins where systematic effects are largest, see Fig.
2.)

We suggest that the highly significant difference in the
connectedness parameter between MIT and UMn does in-
deed reflect the preferential use of memory vs constructed
knowledge in the transfer of information from instruction to
assessment. At MIT, the instruction methods, peer
instruction®* or MASTERINGPHYSICS,?” use both the same rep-
resentation and context (multiple choice questions with pri-
marily textual or graphical choices) as the test. Such “teach-
ing like the test” may well encourage students to respond to
the post-test by referring to a similar remembered concept
question rather than by reasoning from any constructed
knowledge. At UMn, the instruction is in a different repre-
sentation and context than the test-group solving of context-
rich problems. Performance on the test therefore requires
“far transfer” (of knowledge), which involves constructed
knowledge.

The result that 8 ~% (not 1) at UMn indicates that their
students use considerable memory-based learning and do not
learn and transfer knowledge to Newtonian concept tests
fully connectedly. It may be that students in introductory
courses often lack the requisite knowledge to construct
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FIG. 2. (Color) Fits of pure memory, connectedness, and simple
connected-external models to the normalized gain of (A) the MIT
2003 class, (B) MIT 2005 class, and (C) UMn 1997-1999 classes.
The tutoring model is shown in (B) to illustrate its positive curva-
ture in a normalized gain plot. For these plots, each data set was
divided into bins of equal spacing except for two inclusive bins at
the extremes of the pretest range (hence the slightly wider separa-
tion of the edge points), and the average and STD of the mean of
the normalized gains of the students in each bin were plotted
against their average pretest SCOre. & emorylinstr AN Xonnreatingr Were
free parameters for the pure memory and the simple connected
model fit. In the connectedness model fit, 8 was determined by
extrapolating between pure memory and the simple connected
model. Results of fits are in Table L.
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TABLE I. Fit of models to three data sets described in text. Pure memory and simple connected-external
models were first fit to determine the products &yemoning: A0d Acopnecredting- The probability that the data are
consistent with each of the pure models is shown as pepory a0d Peopnecieas rESPectively. Then, the interpola-
tion parameter 3 was varied to produce the lowest reduced chi-squared, X,2,~

Class Model Xemorylinstr Pmemory Qconnectedlinstr ~ Pconnected B X%
MIT Connectedness-external 0.53 =0.02 0.07 1.11+0.05 1.02X10% -0.24+0.16 191
2003

MIT Connectedness-external 0.49 = 0.02 0.01 1.15+0.04 8.34%x107" -0.21+0.09 0.43
2005

UMn Connectedness-internal  0.56=0.01 3.93x107'7 1.45+0.03 3.93x 1077 0.50%=0.06 1.54
UMn Connectedness-external 0.56+0.01 622X 107! 1.45+0.03 1.78x 1073 0.40=x0.05 1.19

knowledge from a presented nugget but find that remember-
ing it is a better strategy than ignoring it. Remembering
something or reasoning by superficial analogy from some-
thing remembered is a valuable strategy to enhance perfor-
mance on a timed test (the concept tests allow approximately
2 min per question).

We investigated whether the MIT—UMn differences
might be caused by the differences between the MBT and
FCI tests used. To check this possibility, we transformed the
MBT scores into FCI scores by using several functions that
fit the data in Wells et al.?® for groups of students given both
tests at nearly the same time. A typical transformation func-
tion to obtain FCI-equivalent normalized gain from MBT
data is

normalized FCI = normalized MBT
+0.11 (when normalized MBT < 0.8),

normalized FCI = 6.40 X normalized MBT/
(1 + normalized MBT?)

—2.21 (when normalized MBT > 0.8).
(19)

Different transformation functions gave different effective
FCI scores for the MIT classes. Fits to these gave B’s be-
tween —0.07 and —0.42, but the average 8 was very close to
the values reported above. In addition, we preformed our
analysis by using only the 16 questions on the MBT that
have multiple choice text-based answers like all those on the
FCI (i.e., excluding MBT questions requiring calculation). Tt
gave results for 8 well within error of those obtained based
on the entire test.

There can be many systematic effects on 8 when compar-
ing classes at different institutions taught with different peda-
gogies by different professors and using different assess-
ments. We have mentioned student motivation due to pass/no
record grading. It would seem that the professor could influ-
ence (8 by aiming the instruction at students with low vs high
prescores.

We suggest that year to year variations in « or 8 would be
probative as to the overall amount and type of learning as-
sociated with different instructors or pedagogies at the same
institution, with the same subject and using the same test,

even if systematic effects due to the particular test or the
particular institutional circumstances do exert a large system-
atic effect on the differences between classes at different in-
stitutions. To establish that the connectedness parameter has
a meaningful interpretation across institutions will require an
extensive study of real data. Nevertheless, it appears that a
complete characterization of prepost data should involve fit-
ting both «a and B.

IV. DISCUSSION

The various models in this paper enable us to fit data like
Hake’s and clearly give connectedness parameter ~0 for his
data. Interpreting this in terms of the models suggests pre-
dominance of memory-based learning for both traditional
and interactive classes. Perhaps, the lower normalized gain
of the traditional classes results simply from the lack of stu-
dent engagement typical of such settings. These models ap-
ply more cleanly to variations with prescore within indi-
vidual classes, and our success in fitting the high-quality
MIT and UMn data should inspire others to make similar fits
to their data from prepost testing with intervening instruction
and to try to draw conclusions about the type of learning or
transfer that they are observing. Anticipating and hoping to
encourage this, we now discuss some caveats about this
work, some conclusions, and some challenges that it raises,
especially with regard to the models and their implications.

A. Caveats

“Learning” is the absorption or incorporation of new
knowledge into the mind and cannot be measured without
some sort of before and after assessment of the learner.
When the student’s learning is measured by some assess-
ment, our models really involve knowledge transfer from
instruction to assessment. For example, the type of learning
displayed by MIT students might be significantly connected
if assessed by using transfer to context rich problems. Simi-
larly, the UMn students might display more pure memory-
based learning if assessed by using context rich problems
similar to those used for instruction.

Once we have distilled key ideas from a typical learning
theory into mathematical assumptions, those assumptions
completely characterize the content of the model. A fit of the
resulting model to the data indicates only that those math-
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ematical assumptions, but not all the ideas of the theory mo-
tivating the model, can describe the dependence of score
improvement of students with different prior knowledge.
(Moreover, it may be possible to derive the same model from
seemingly different assumptions.) Obviously, the connected-
ness parameter measures the advantage of a student with
more prior knowledge in transferring instruction into post-
test improvement. Our data illustrate one case that seems to
accord with expectations based on the learning theories that
motivate the models.

Data fit by our models are subject to many systematic
errors. While most of those discussed above do not apply to
comparisons made for similar classes with the same assess-
ment, the effects of assuming a distribution of individual
sticking coefficients, testing error, or varying difficulties of
knowledge nuggets should be numerically investigated (al-
though averages like this rarely make huge differences in fit
value or slope, which correspond roughly to @ and B). Ob-
viously, inclusion of a few very easy or very hard items on
the tests will cause a systematic tilt of the normalized gain
[Eq. (1)] that could affect the extracted value for B. Still,
when using the same assessment instrument, especially at the
same institution with intervening changes in instructional de-
sign, it seems reasonable to argue that the overall normalized
gain and connectedness parameter are related to the overall
efficacy of instruction and its degree of constructedness.

B. Conclusions

Learning theories generally classed as tabula rasa, con-
structivist, and tutoring assign different roles to the prior
knowledge of those instructed. These motivate our different
mathematical learning models.

The connectedness model is shown to fit high-quality pre-
post test data almost within error across a factor of 5 varia-
tion of both initial Ky, and Upy, fitting the data even when
both pure models are excluded by astronomical p values. It
seems likely to be a useful parametrization for the many sets
of observed data with correlation between normalized gain
and prescore.?

The fact that our two-parameter model fits excellent data
so well shows that more sophisticated mathematical learning
models (e.g., representing additional features of constructiv-
ist hypotheses) are unlikely to fit the data significantly better
and will likely be less preferred as explanations for high-
quality prepost test data on the basis of Occam’s razor. More
detailed assessments of students (e.g., other types of assess-
ment) seem necessary to justify models with more detailed
assumptions than the simple ones made in our models.

C. Challenges and open questions

A central question is raised by our work together with
Hake’s data and the many studies showing quite constant
normalized gain vs pretest score. Why are these data consis-
tent with the pure memory learning model [Eq. (4)], suggest-
ing memory-based learning, when memory-based theories of
learning have been largely supplanted by constructivist theo-
ries? (For example, if constructivist learning is, in fact, oc-
curring, why do students with more domain knowledge and
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therefore higher pretest scores not learn faster and therefore
have higher normalized gain as predicted by either our con-
nected model or the self-tutoring model? Is it possible that
peer instruction using questions similar to those on the con-
cept tests allows students to transfer knowledge to those tests
mainly by memory or simple analogies?) A less important,
but still vexing question is as follows: “How is it possible
that many university classes have shown a significant posi-
tive correlation of gain and pretest’® while Hake’s averages
of classes show essentially none?”

Turning from the connectedness models to the tutoring
model, it would be interesting to see if data on student learn-
ing of vocabulary words follow the tutoring model as sug-
gested earlier. In addition, learning data from the growing
number of computer-based personal tutors should approach
this model as the tutors approach our ideal of perfection.
Several authors?®37-3% have suggested that lack of particular
identifiable and measurable skills influences the normalized
gain. Our connectedness model should fit data involving this
effect if K(z) in Eq. (11) were replaced by K,,;.;na» the mea-
sured external knowledge. We believe that the key challenge
(especially to those who believe in using outcomes of in-
struction for some useful purpose) is to investigate whether
the models here can be used to provide insight into data on
learning. Hake’s paper showing that the normalized gain [g
=1-exp(aty,y,)] is primarily determined by the mode of in-
struction offers some hope that the connectedness parameter
B will also prove to be a parameter that is primarily sensitive
to the type of learning and transfer. Showing this will require
a study of similar magnitude to his, however.

V. SUMMARY

Our models make specific mathematical predictions that
are based on simple assumptions motivated by different theo-
ries of learning. The connectedness model introduces a con-
nectedness parameter that indicates the degree to which
learning depends on the student’s prior knowledge. Based on
the ideas underlying the models, this parameter indicates the
relative amount of memorization vs associative transfer from
instruction to assessment. Existing data are well fit by this
model, sharply determining this parameter. When validated
by comparison with more examples (and possibly general-
ized to account for more effects), such models may well
allow diagnosis of how students are learning from the re-
peated measurements of how much students know that are
already being made for other purposes. We urge researchers
who publish prepost test data to fit it by using the connect-
edness model and to report both a and .
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