Appendix B: Supplemental Calculations and Simulations for the
Concentration Factor

The Level Coding for Concentration Factor

Let us begin with a two-peak situation where most of the responses are concentrated on
two choices. Table B-1 shows the simulated data for a range of possible combinations and
their corresponding C factor values. We can see that the value of C ranges between 0.23 to
0.36 when 80% to 90% of the responses are concentrated on two choices. Table B-2
shows the simulated data with no dominant peaks. We can see that when the responses are
somewhat evenly distributed among three choices, the value of C becomes small. Even
with a 90% concentration among three of the choices, the largest C is smaller than 0.17.
Table B-3 shows the case when the majority of the responses concentrated on one choice.
At different ratios between 60% and 90%, the values of C range from 0.4 to 0.8.

Simulated data for quantization

Table B-1. Two peaks situation (N=100)

80% concentrated on two choices | 90% concentrated on two choices
A|B|C|D]|E C A|B|C|D]|E C
40140 8 | 6 | 6| 023 140|150 5| 3 | 2 | 0.354
41(139| 8| 6 | 6 (0231141149 5| 3 | 2 ]0.352
421381 8 | 6 | 6 10231142148 5| 3| 2| 0.35
43 137| 8 | 6 | 6 0233143147 5| 3| 2 ]0.348
44 136 | 8 | 6 | 6 | 0235144146 | 5| 3 | 2 | 0.347
45135| 8 | 6 | 6 [ 023845145 5| 3 | 2 | 0.347
46134 | 8 | 6 | 6 | 0241146144 | 5| 3 | 2 | 0.347
47 33| 8 | 6 | 6 [ 0246147143 5| 3 | 2 |0.348
481321 8 | 6 | 6 | 025 148|142 5| 3| 2| 0.35
491311 8 | 6 | 6 (0255149141 5| 3| 20352
50130| 8| 6|6 |0261]50]|40| 5| 3| 2 | 0.354

Table B-2. Data more widely distributed among three or more choices (N=100)

80% concentrated on three choices 90% concentrated on three choices

A B C D E C A B C D E C

20 27 33 10 10 | 0.062 ]| 20 30 40 5 5 0.169
21 27 32 10 10 [ 0.057 | 21 30 39 5 5 0.163
22 27 31 10 10 | 0.054 | 22 30 38 5 5 0.157
23 27 30 10 10 [ 0.051| 23 30 37 5 5 0.152
24 27 29 10 10 | 0.048 ]| 24 30 36 5 5 0.148
25 27 28 10 10 [ 0.047| 25 30 35 5 5 0.144
26 27 27 10 10 | 0.046 | 26 30 34 5 5 0.141
27 27 26 10 10 | 0.046 | 27 30 33 5 5 0.138
28 27 25 10 10 | 0.047 | 28 30 32 5 5 0.137
29 27 24 10 10 | 0.048| 29 30 31 5 5 0.136
30 27 23 10 10 | 0.051] 30 30 30 5 5 0.135
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Table B-3. One peak situation (N=100)

Variable concentrations on one choice
A B C D E C
60 30 5 3 2 0.409
65 25 5 3 2 0.455
70 20 5 3 2 0.512
75 15 5 3 2 0.579
80 10 5 3 2 0.653
85 5 5 3 2 0.735
90 0 5 3 2 0.823

The Maximum Line of the State Density Plot

Let’s define the problem as the followings: Suppose we have 100 responses on one
question with 5 choices (N = 100 and m = 5 with choices of a, b, ¢, d, and ¢). Without
loosing generality, we will always make “e” as the correct answer. Thus the score, S, will
represent the number of students who have chosen “e” (here the score can be from 0 to
100). Since the value of S is already determined, now the problem becomes one dimension
less with a new constraint of:

a+tb+c+d=N-S

Then it is all up to the configuration of the “a”, “b”, “c” and “d” to determine the
concentration factor on the S-C plot. For each value of the score, the maximum density of
states happens when the number of the possible combinations is at the greatest. For the 4-
element case, let’s take “a” as the variable analogous to the score in the 5-item case. For a
given value of “a”, the largest number of possible combinations occurs when the value
range of all the rest three are equal and at their largest possible values which indicates that
a=0. Therefore the maximum line is at where a = 0 and the rest of the three are
approximately equal to each other. This is equivalent to the low boundary of the 5-element
S-C plot with one choice always being zero. In figure B-1, the calculated maximum line is
plotted together with the state density.
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Figure B-1. The peak density line of the S-C state density attractor

Numerical Evaluations
1. Numerical Measures of the States and Shift Vectors

The S-C plot provides us a graphical representation of the data. In many cases,
quantitative evaluations are also desired. Therefore we designed the following numerical
measures that can give quantitative evaluations of various aspects of the student
performance.

a. The Agreement

Since the student data is now represented with points and vectors in a two-dimensional
graph, the performance needs to be evaluated with the agreement between the vectors
representing student responses and the vectors for the favorable responses.
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Figure B-2. Vector analysis of S-C state shifts

As in figure B-2, we can construct a vector from the origin to the initial point, denoted
as rip, to represent the initial state. The vector, rg, representing the final state can be
defined similarly. We also know that the most favorable response is at point (1,1).
Therefore we can always define the optimum response vector, r,, as one starting from the
origin and ending at point (1,1). To see how good the ri, and rs, agree with the optimum
state, we can define the agreement measure as:

It is obvious that the value of the agreement is bounded between 0 and 1.
b. The Possible Agreement Improvement (PAI)

Once we have the initial state agreement (Ai,) and the final state agreement (Ag,), the
improvement of the agreement can be evaluated. In a similar manner as the definition of
the possible gain on scores,!! we define the possible agreement improvement as:

Aﬁl — Ain
1-A,

PAI =

c. The Possible Favorable Shift
The student improvement can be represented with a vector, rg, starting from the initial

point towards the final point. Then for each initial state, there exists a most favorable shift
vector, rp. Obviously rp is a vector starting from the initial point to point (1, 1). In reality,
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the student actual shift vector will often be different from the most favorable one. To
measure how good their actual shift is, we can again find the agreement, denoted as “s”
between the actual shift vector and the most favorable shift vector:

_ KT

§ 2
|rF |

As we can see, if only the score component of the shift vectors is evaluated, it becomes
1-D and it will give the same calculation as “h” — the scaled improvement in score defined
by Hake.? There are possibilities for the absolute value of “s” to be greater than 1 if the
initial point is close to “HH” with a large unfavorable shift towards “LH” or “LL”. In
many cases when the initial score and concentration have similar values, the measure of
“s” and “PAI” gives similar results. The details are explained later.

d. The Possible Concentration Gain

Since the concentration factor tells important information about the student mental
models, it is useful to know the improvement on this issue. The possible concentration
gain is defined as

d — Cﬁl — Cin
1_(jin

where Ci, (and Cy,) represents the initial (and final) concentration factor.

The “PAI” and the “s”

Suppose we have an initial point at (S1, D1) and a final point at (S2, D2), then

A :SI+D1

n=T _S2+D2 4 par=2a—Aa _ (82-S)+(D2-DI)

" 2 1-A, (I-S1)+(1-D1)
The possible favorable shift can be calculated as:

(s2-s1)+ (D2 -1 =PY

. (82-81)(1=S1) +(D2-DI)(1-DI) _ (1-S1)
(1-S1)*> +(1-D1)’ (1—s1)+ (11— DD
(1-S1)

Then it is easy to see that when S1 and D1 have similar values, the s and PAI are about the
same, which is what we have got from our real data analysis.

Transformation between I' and C
The regions for different response types shown in Figure 3-3 have a different

configuration in the S-I" plot, which is mapped out in Figure B-3.
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Figure B-3. Regions of different response types in S-I" plot

Since I represents the variation part of the overall concentration which can also be
obtained with another transformation by using

CV — C B Cmin (B-l)
CM - CMin

It is important to know how the two calculations are different. In figure B-4, the three
constant Cy lines are plotted on the S-I" domain where we can see that the two
transformations are different especially when the score is large. This is because the effect
of score on the concentration is getting larger when score is large.
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Figure B-5. " vs. Cy at different score

To see more clearly about the relation between I" and Cy, we graphed the I vs. Cy in
figure B-5 with different scores. When score is zero, since there is no contribution from
the score the two transformation give the same results. In general the two transformations
give similar results (off by 10% when score is at 50%) when the score is not too large. But
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the physical meaning of Eq. (3-10) is more straightforward and Eq. (B-1) has a
singular point when score equals 100%. Therefore, in our analysis, Eq. (3-10) is used.

Additional Comments on Linearization of I

In cases when there is only one major distractor, the student behavior on the
uncommon distracters is very close to a random situation. That is student reponses on the
unpopular distracters are like random guessing. Therefore, the lower boundary line, which
is obtained by assuming that the responses on the rest of the choices are evenly distributed,
can be a good approximation of the response curve describing the relation between I" and
the largest single choice concentration. With this assumption, the square root of I" follows
nicely with the actual concentration on the major distractor (shown in table B-4).

Table B-4. Concentration Deviation when the score is 50%

Concentration| Effective Relative Average T \/F
on One Concentration|Concentration
40% 15% 38% 0.15 0.39
60% 35% 58% 0.35 0.59
75% 50% 67% 0.55 0.74
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