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Abstract 

Probability plays a critical role in making sense of quantum physics, but most science and 
engineering undergraduates have very little experience with the topic.  A probabilistic interpretation 
of a physical system, even at a classical level, is often completely new to them, and the relevant 
fundamental concepts such as probability distribution and probability density are rarely understood.  
To address these difficulties and to help students build a model of how to think about probability in 
physical systems we developed a set of hands-on tutorial activities appropriate for use in a modern 
physics course for engineers.  In this paper, we discuss some student difficulties with probability 
concepts and an instructional approach that uses a random picture metaphor and digital video 
technology. 

 
I.  INTRODUCTION 

A student’s first course in quantum physics can be quite difficult. They have to think about 
phenomena for which they have no direct personal experience, they have to follow long chains of 
inference from experiment to what appear to be bizarre conclusions, and they have to deal with 
phenomena that fundamentally involve probabilities. This last introduces a number of difficulties. First, 
students of physics are rarely introduced to the use of probability in classical situations early in their 
studies, even in places where it would be appropriate, such as error analysis or statistical mechanics. 
Second, studies of people’s understanding of probabilistic ideas in cognitive psychology1 and 
mathematics education2 research indicate that serious misunderstandings are common.   

At the University of Maryland, the Physics Education Research Group carried out a project to 
explore the difficulties students had in learning quantum physics. The purpose of this paper is to 
highlight a few pieces of information from this research with emphasis on its practical values to 
instruction.  Our research was carried out in two venues: the third semester of our introductory calculus-
based engineering physics class (Physics 263) and an upper division one-semester course in quantum 
physics for engineers (Physics 420). Most of the emphasis was on this last venue and most of our 
curriculum development was tested there. The 263 class is required of all engineering majors. The 420 
class is an upper division elective for engineers so it is considerably smaller (N ~ 15-30). It is dominated 
by electrical engineers (80-90%) and is taught every semester.   

After years of experience in a seemingly deterministic world, reinforced by learning classical 
physics, students can develop a strong deterministic view of the physical world.  In most classical 
situations discussed in introductory classical physics classes, the behavior of a physical system can be 
precisely determined, and the emphasis is often on the construction of a detailed, quantified description 
of the motion of an object.   
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In quantum mechanics, students have to use and interpret probabilistic representations that are very 
different from the deterministic ones they have become accustomed to thinking of as “physics”.  In this 
paper, we first discuss our research, showing the kinds of difficulties students encounter with probability, 
including the presence of the gambler’s fallacy3 and the difficulty with the idea of a probability density. 
Then we consider instructional environments that can help students understand the fundamental concepts 
of probability and learn to use a probabilistic representation to interpret physical systems. To help 
students over the gaps, bridges are needed, and we make this bridging process in two steps.4  The first is 
to help the students develop a basic understanding of probability using contexts that they are familiar 
with, e.g. classical systems.  The second is to use new metaphors, hands-on analysis, and video tools to 
bring the students from an understanding of classical probability to an understanding of quantum 
probability.   

II.  STUDENT DIFFICULTIES IN UNDERSTANDING PROBABILITY 

Many approaches in traditional instruction of quantum mechanics assume that classical pre-requisites 
such as the understanding of probability and energy diagrams are readily accessible to students.  
However, students often have a lot of difficulty with these pre-requisites.5  Specifically, we want to see if 
the students were able to decipher the meaning of the phrase “probability of locating a particle in a 
certain region”.  In general, most undergraduate students are familiar only with a kinematical description 
of motion (of a particle in terms of a trajectory observed over a period of time).  They may find it 
difficult to comprehend how a probabilistic representation relates to actual observations and how the 
measurement can be used to construct details of the particle behavior in the system.  

Our observations were conducted with the students from two classes of the third semester of Physics 
263 (one in the fall semester of 1994 and one in the spring semester of 1996) and two classes of Physics 
420 (one each in the spring and fall semesters of 1998).  The student population for both courses 
consisted mainly of science and engineering majors. In the Physics 263 course, only the lecture section 
taught by one of the authors (EFR) was studied.  In the class of fall 1994 quantum physics was treated 
only through traditional lectures and in the class of spring 1996 we used three quantum tutorials, but 
none addressed the issue of probability.6  The Physics 420 class was part of the curriculum development 
project, “A New Model Course in Applied Quantum Physics.” For the three years of the project, the fall 
semester class was taught in a traditional fashion as a control by members of the department not 
participating in the research and in the spring semester class was taught in a modified fashion using our 
newly developed materials by members of the PERG.  Most of the instructional innovation used a 
Tutorial format. Tutorials are a type of guided group-learning instruction developed by Lillian. C. 
McDermott and the physics education group at the University of Washington.7  The quantum tutorials 
were developed by the University of Maryland PERG using a similar format. 

The instruments used in this study to probe student thinking include two concept quizzes, one exam 
question, and student interviews. (The quiz and exam questions are given in the Appendix.)  The set of 
problems in question A were designed to probe students’ understanding of fundamental ideas in 
probability including independence of events and the gambler’s fallacy.  These problems were given at 
the beginning of the Physics 420 class to collect information on students’ initial states.  The question B 
was designed to probe a number of issues.  First it tests to see whether the students understand the 
different shapes of the wavefunction of bound states.  Second it tests to see if the students can make the 
link between the amplitude of the wavefunction and the probability density of a particle being in certain 
region.  It also gives the information on student understandings of the potential well.  This question was 
given to the two Physics 263 classes after instruction.   

The problem shown in question C probes students’ understanding of probabilistic interpretations 
with both classical systems and quantum systems.  This question was used in the final exam of the 
Physics 263 class in spring 1996.   
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A total of 16 individual interviews were conducted with students from the Physics 263 and Physics 
420 classes to investigate students’ understanding of classical pre-requisites.  The part of the interview 
relating to probability was based on the same issues as probed by the quiz problems but with a more 
open-ended style.  In the following, we briefly summarize our observations.   

• Predictability and the Stochastic Nature of Probability 

In the five interviews conducted with the Physics 263 students (spring 1996) after instruction, we 
found that many of them (4/5) held a deterministic empirical intuition of probability. (These five students 
are all received a grade of “A” and are not representative of the overall population).  Their descriptions 
show an incorrect understanding of the difference between the stochastic nature of any single observation 
and the somewhat determined expected distribution of the results of ensemble observations.  These 
students bring with them the belief that small samples will replicate the probabilistic trends expected 
from a very large number of trials and that the specific result of any single measurement can be affected 
by the previous sequence of outcomes.  For example, one of the students responded to the first part of 
question A with “ … since you already have three heads in a row, you should have more chances to get a 
tail on the fourth time …”. 

A quantitative study with the students in the advanced class (Physics 420 with a total of 18 students) 
in the spring of 1998 also shows similar results.  We used an open-ended survey that has a problem about 
coin-flipping experiment (see Appendix, question A.1 ). A majority of the students showed the gambler’s 
fallacy: 61% thought that the result of a single coin-flipping event is dependent on the results of previous 
coin-flipping activity.  In addition, 27% of the students thought that if the coin were flipped 100 times, 
there would be an exact 50/50 distribution for heads and tails.  The last part in question A concerns 
probable values of students’ SAT scores and also deals with the same issue.  In this case more than 67% 
of the students considered that knowing one student’s score would affect the probable average score of 
the other students.   

• Understanding Probabilistic Representations  

None of the students who visited during our office hours or participated in interviews reported 
having had any previous experience (before instruction) in using a probabilistic interpretation to think 
about a physical system.   A very small number of them did recall the impression of doing some kind of 
math with probability in a math class but failed to remember any details of the mathematics.  None had 
ever used probability to describe a real physical event.   

In the physics 263 class of fall ‘94, we gave question B in the Appendix to the students on a quiz 
after instruction in quantum mechanics.  On the part in which the students were given the wavefunction 
and asked to determine where in the well the electron would most likely be found, most of the students 
didn’t use the correct spatial dimension, x, in their reasoning. The largest fraction, 40%, left the question 
blank; 36% of the class used the vertical dimension, V, as a spatial dimension for position.8 (As suggested 
by interview results, many of these students appeared to consider that electrons with different energy 
states would also be in different places on the vertical dimension in the potential well.)   Only 9% of the 
class used the correct dimension and among them only one student came up with the correct answer.  
Among all the students, only 11% provided some kind of reasoning for their answers on the quiz.     

III. UNDERSTANDING PROBABILITY WITH CLASSICAL SYSTEMS   

The role of probability in microscopic systems is conceptually quite subtle. For most of the 
traditional experiments of quantum physics, it is not possible to set up an individual quantum object —  
e.g., an atom, molecule, or nucleus — and probe it repeatedly.9  Instead, an ensemble of identically 
prepared objects is probed and the ensemble average is identified with the quantum average. Thus, in an 
(e,2e) experiment, thousands of electrons knock electrons out of thousands of different atoms or 
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molecules and for each individual case, the struck electrons’ momenta before the collision is determined 
from momentum conservation. The result is interpreted as the probability distribution of finding 
momenta in a single atom or molecule.10  Thus we note that even if the fundamental mechanics of atoms 
and molecules were classical, we would still need to describe most experiments with atoms using 
probabilities. This fact allows us to build a bridge through the use of probability in classical situations. 

We introduce a metaphor, the random picture idea, as a fundamental tool for students to construct a 
probabilistic representation.  Since atoms cannot be tracked or controlled individually, we ask students to 
consider a set of oscillating objects whose phases are random.  We then ask the students to imagine 
taking a series of flash photographs of a single classically moving object at random times and using those 
photographs to predict where the object is most likely to be found.  Based on this notion, hands-on 
activities and discussion questions were developed and used in tutorials where the students can apply this 
random picture metaphor to analyze real physical systems such as a cart moving back and forth on an air 
track.   

Building the probability density function  

Consider a simple classical system with periodic motion such as a pendulum bob swinging back and 
forth.  The traditional approach in classical mechanics is to think about the motion of the bob, the force 
on the bob during the motion, the velocity (or position) vs. time relation, etc.  Such approaches often 
encourage the students to focus on the motion of the objects, which encourages a deterministic view of 
physical systems. 

 Another way to analyze this system is to think about its probabilistic aspects.  For example, if one 
doesn’t know when the motion of the bob started, its position at an arbitrary time is uncertain, but one 
can still predict the probability of finding the bob in certain regions, even though the exact position-time 
relation of the bob is unknown.  Figure 1 is a time-exposure photograph of a white pendulum bob 
swinging against a black background.  The brightness of a particular area is a relative measure of the 
amount of time that the bob spends in the corresponding region.  It therefore reflects the distribution of 
the probability density for the bob to be found at different areas. 

 

Figure 1. Time exposure photo of a white pendulum bob swinging against a black background. 

 The time-exposure photograph produces a continuous distribution function for the probability 
density.  We can use the random picture idea to generate discrete measurements that reflect the 
probability density distribution.  With a large number of “random pictures”, the probability density 
distribution can be reconstructed with acceptable accuracy.  In our instructional experiment with this 
metaphor, we found that most students can easily accept and interpret this type of probabilistic 
interpretation.11   

The mathematical calculation is straightforward for the students in the calculus-based introductory 
physics courses.  In practice, we first help the students understand that the motion is periodic.  Thus for 
the continuous case, we begin with the idea that the probability of finding the object in a small region ∆x 
is proportional to ∆t, the time that the object spends in ∆x.  When ∆x is small and the velocity of the 
object doesn’t change rapidly within ∆x, ∆t can be approximated by 

v(x)
xt= ΔΔ                 (1) 
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where ∆x represents a region defined by the interval (x1, x2) and equals x2 − x1, and v(x) is the average 
velocity of the object inside the interval (x1, x2), where  x is taken to be the center position of (x1, x2).  Use 
P(x, ∆x) to represent the probability for the bob to be in ∆x and denote the period of the motion by T.  
Since the object will pass through the region twice in one period, the total time spent in ∆x has a factor of 
2.  Then P(x, ∆x) can be obtained from 
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2),(2),(
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x

TT
xxtxxP ∆=∆∆=∆          (2) 

The first part of Eq. (2) is the core conceptual equation that allows the students to make sense of the 
meaning of the probability.  The second part of Eq. (2) provides a mechanism to calculate the result, 
using energy conservation to find v(x).  Define ρ(x) as the probability density where 
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The normalization condition can be written as  
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It is worth mentioning that at certain positions the velocity may become zero, making ρ(x) go to 
infinity at that point.  But typically the singularity is integrable and the probability in the small region 
around that point is finite.  This problem can be a good exercise for advanced students. 

 With the random picture method, the probability P(x, ∆x) can be estimated by counting the number of 
pictures showing the object in ∆x.  Denote this number with m(x, ∆x) and let N represent the total number 
of pictures taken in an experiment.  (It is necessary to have a large N.)  Then, the probability of finding an 
object in region ∆x can be obtained from 

  
N
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From the definition the probability density can be extracted by: 
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which also satisfies the normalization condition: 
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Here, it is assumed that different regions of ∆x do not overlap. 

Using digital video to find probability distribution – a pseudo-random method 

Implementing a real experiment using the random picture method requires expensive hardware 
resources.  In addition, the students need to learn how to handle the equipment, and the time required 
could be a large overhead distracting them from learning the real physics.  An alternative way that we 
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find suitable for lab and tutorial settings is to make a digital video of a working physical system in 
advance.  Then in the class, the students can work on the digital videos with a pseudo-random method, 
picking random frames from the video as if they are taking random pictures of the real system.  Here we 
discuss a simple example to show how this method works in practice.  

The experiment is illustrated in Figure 2. A glider on an air track is attached to two identical springs 
and is set to oscillate along the track.  The motion of the glider is videotaped and digitized.  Since the 
damping is small, we can get several complete cycles without noticeable changes in the amplitude of the 
oscillation.   

 Glider Spring 

Air Track 
 

Figure 2. A glider on an air track in harmonic motion 

From the video, we can get a series of frames showing the position of the glider at different instants 
of time.   Since the video is captured with a fixed rate of 30 frames per second (fps), the time interval 
between consecutive frames is a constant equal to 30

1 s.  The videos used in our labs were made to 
include exactly one complete period of motion.  Thus taking a picture at some random time tr can be 
approximated by taking a picture at some time t inside one period.  This t can be calculated from  

t = ( tr  modulo T )              (8) 

 In the experiment, the period of the oscillating glider is about 2 seconds, which gives a total of 60 
frames.  Each frame is labeled with a number n (n = 0 ~ 59) and tagged with a time tn, which represents 
the time relative to the beginning of the video.  Then we can write  

tn = n ⋅ 30
1                  (9) 

Now we build up a table containing a full set of frames in one complete period. (See Table 1.)  
Suppose a student takes a picture at a random time tr.  One can use Eq. (8) to get t.  Then a tn can be 
matched  (from Table 1) by finding a value closest to t .  The video frame associated with the matched tn 
is picked as the picture taken by the student at time tr.  This process is illustrated in Figure 3.  Obviously 
the outcome is not the real random picture that the student would get at tr, but it is a reasonable 
approximation.  Using a high-speed camera, one can increase the frame rate and improve the accuracy 
accordingly.  For the glider experiment, the frame rate of 30 fps is enough for a good result. 

Table 1.  Frame table for a complete period where tn= n ⋅ 30
1  and xn is 

determined by the position of the cart in nth frame 

Frames (n) tn(s) xn 
0 t0 x0 

1 t1 x1 

2 t2 x2 

! ! ! 
59 t59 x59 

 

The position of the cart in each selected frame can be easily found with video analysis software such 
as VideoPointTM.  By picking a large number of random frames (N~1000), we can construct a data set for 
the positions of the cart at different random times.  An Excel spreadsheet is developed using the internal 
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Visual Basic functions to process the data.12  In the tutorial, the students work with VideoPointTM to get 
the position of the cart and import the data to the Excel spreadsheet.  The spreadsheet follows students’ 
commands to generate pseudo-random pictures and guide the students through the calculations.   

 

Looking up the frame 
table for a best match 

(Table 1) 

Random Time 
Generator 

Eq. (8) 

tr 

t 

tn Selected 
Frame xn 

 

Figure 3. The process of using the pseudo-random method to take random pictures 

In the spreadsheet, the total range of the motion is divided into eight small regions with a fixed length 
of ∆x (this has to be set larger than the maximum difference of positions of the glider between 
consecutive frames to make a more uniform distribution and to avoid zero counts).  After calculating the 
positions of the glider in all the pseudo-random pictures, the spreadsheet does a frequency count of the 
frames that have the position of the glider in each of the eight regions.  The counted number is 
proportional to the probability of finding the glider inside the corresponding region and probability 
density is obtained with Eq. (6).  A typical plot of the calculated probability distribution is shown in 
Figure 4.  Smoother graphs can be obtained when using videos with a higher frame rate, which can 
reduce the error of the pseudo-random method and allows smaller ∆x.  Larger N can reduce the variance 
of the calculation. 

 Probability Plot

0

0.05
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0.25
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Position x (m)

Probability 

 
Figure 4. The probability distribution of a glider in harmonic motion, created by computer using 
the pseudo-random picture method.  The plotted value represents the actual probability for the 
glider to be found in the each of the eight regions. The dashed line represents the theoretical curve. 
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For a harmonic oscillator, the analytical form of the probability density function can be easily found 
using Eq. (2) and energy conservation to be  

22

1)(
xA

x
−

=
π

ρ              (10) 

where A is the amplitude of the oscillation.   

These activities were used to develop Tutorial type instruction.  In the Tutorial implemented in 
Physics 420, students are guided to derive this function and they can compare it with the results obtained 
with the computer using the random picture idea.  With the students in the Physics 263 class (spring 
1996), the Tutorial was simplified to focus on qualitative discussions of the random picture idea using 
the computer-generated results.  

Tutorial activities  

To help students develop correct understanding, a number of experiments with simple one-
dimensional systems were developed to use in a Tutorial setting.  The Tutorial begins with systems of 
constant speed and progresses to complicated systems such as the oscillating glider that has changing 
velocities.  With these activities, students explore several key issues including the concept of probability 
density, relations between probability and probability density, mathematical formulation of probability 
density with simple classical systems, and the concept of normalization.  In the following, we briefly 
describe two specific activities used in this tutorial.  

1. Balls rolling down a stepped track. 

A two-step track with sections of equal length is built as shown in Figure 5.  A series of balls with 
equal separation are set rolling towards the right with a very small initial velocity v0.  The distance 
between the balls (denoted with d) is adjusted such that when a ball falls off the right edge of the track, 
the next ball enters the left side of the track.13  This ensures that only one ball is on the track at any time 
and thus creates a pseudo-periodic motion on the two lower segments of the track with a period, T, that 
equals the time that a ball takes to roll over the two lower steps.  By setting a small v0, we can ignore the 
initial kinetic energy and simplify the calculation.   

In the tutorial, we demonstrate the pseudo-periodic situation using a real setup and let the students 
play with it to get hands-on experience.  The two equal steps of the track provide a straightforward 
example for the students to analyze the relation between probability and two different but constant 
velocities. 

 

L L 

h1 = 3cm 

d d v0 

level 2 

level 1 

0 x 

Camera 

h2 = 9cm 

 
Figure 5. An experiment with balls rolling on a stepped track 
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2. A classical potential well.  

In the second experiment, we use the glider and the air track.  This time, spring bumpers are attached 
to the glider and the two ends of the air track to produce elastic collisions at both ends (see Figure 6).  
The potential energy of the glider is constant between the bumpers and rises quickly at the two ends like 
a deep square well. 

 Glider 

Air Track 

Spring 
Bumper 

 
Figure 6. An experiment showing a classical potential square well 

IV. EVALUATION OF THE CURRICULUM 

In the Physics 263 class of spring 1996, we implemented a tutorial that used the random picture 
metaphor with the classical potential well and harmonic oscillator experiment.  To see if the new 
instruction improved students’ understanding of probability, the quiz question (question B) was given to 
the students in the spring ‘96 class after they did the tutorial.  The results from both fall ‘94 class and 
spring ‘96 classes are shown in Table 2.  From the data, we can see that after the tutorial, 30% of the 
students used x as the spatial dimension to represent the position of the electron whereas in the class 
without the tutorial only 9% of the students used the correct spatial dimension.  The data also shows that 
a significant fraction, 27%, of the students could relate the probability of finding the electron in certain 
regions to the velocity of the electron.  Although they are using a classical argument, we consider this 
result encouraging, compared to the situation of the class in fall 1994 where few could come up with any 
type of reasoning about probability.  We also find 33% of the students in the spring 1996 class attempted 
to explain their reasoning and most of them used velocity and energy.  In fall 1994, only 11% of the 
students attempted some kind of reasoning and few of those made any sense in terms of physics.  

Table 2. Physics 263 class students’ responses on conceptual quiz (question B in Appendix) 

Types of Student Responses Fall 94 Spring 96 

Use energy levels/ states (vertical dimension) to describe the 
position of an electron in a potential well (incorrect) 36% 27% 

Use x (horizontal dimension) to describe the position of an 
electron in a potential well (correct) 9% 30% 

Others 15% 14% 
Blank 40% 29% 

Implied Student Reasoning Fall 94 Spring 96 
Use velocity for reasoning of probability 0% 27% 

Give reasoning (including correct and incorrect ones)* 11% 33% 
*The reasoning of fall 94 students is mostly based on irrelevant issues.  The reasoning of the 
spring 96 students is based on energy and velocity in a classical sense. 

 

On the final exam for the class in the spring of 1996, we gave students a multiple-choice multiple-
response (MCMR) question (question C shown in the Appendix).  Students’ responses on this question 
(Table 3) also show encouraging results: 42% of the students can answer both the quantum and the 
classical part of the questions with all correct choices (i.e. no incorrect answers).  Since it is a MCMR 
question, the number of students giving partially correct answers is much higher – around 80%.  This 
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suggests that the students who didn’t give perfect answers were in a mixed state, which is considered as a 
typical intermediate stage towards a favorable concept change.14, 15, 16     

Table 3. Students’ responses on the question in final exam of Physics 263 class in spring 1996 
(question C in Appendix) 

Student Response Classical Part Quantum Part 
Students picked all correct 
choices 58% 69% 

Students picked correct choices 
and also some incorrect choices 81% 84% 

Students answer both parts with 
all correct answers 42% 

 

In the Physics 420 class of spring 1998, the three activities were integrated into two tutorials and 
students received more emphasis on the mathematical formulations of the probability density function in 
lecture.  The Physics 420 class in fall 1998 was taught with traditional lectures only.  For each of the two 
classes, we interviewed about half a dozen students after instruction (the class size is 15~20 students).  
The six students we interviewed in spring 1998 all used the random picture metaphor very fluently in 
their reasoning and could apply this idea to think about measurement of real physical systems.  Three of 
them also gave a correct interpretation of quantum probability.   In contrast, from the five students we 
interviewed in fall 1998, only one gave the correct quantum interpretation.  The other four students failed 
to put together a reasonable mental picture for the probabilistic representation. Two of them couldn’t 
give any reasoning at all; the other two students tried to provide some kind of reasoning but failed to 
recognize certain crucial pieces such as the correct spatial dimension and the connection between 
quantum probability and the measurement of a real physical system.     

V. CONCLUSION 

It is well known that quantum physics has many difficult conceptual “dualities” —  waves and 
particles, position and momentum, the quantum character of small systems and the classical limit. What 
is not always appreciated is that the teaching of quantum physics also contains instructional dualities that 
do not always appear in classical physics. 

1. Quantum physics builds on a classical base, using many classical concepts, variables, and 
representations. If students are weak on these items, learning of quantum physics may be difficult. 
However, strengthening that classical base can increase the likelihood that students will attempt to apply 
classical reasoning to quantum situations.  For example, in the previous section, we discussed the results 
of six interviews with students from a class that used tutorials on classical probability, where we found 
that half of the six students were able to develop an appropriate understanding of quantum probability, 
however, the remaining students used classical arguments in their reasoning – students tried to associated 
the probability of finding an electron in a potential well with the velocity of the electron and were able to 
build a classical interpretation.  On the other hand, among the five students we interviewed from the class 
without tutorials, four of them failed to provide any coherent explanation (not even a classical one).     

2. We want our students to see physics as building a coherent and consistent representation of the 
physical world. “Quantum thinking” requires the ability to use models that appear contradictory in a 
coherent way. Being exposed to quantum dualities can undermine student views that physics is consistent 
and can “make sense.”  When we gave the Maryland Physics Expectations Survey (MPEX)17 to students 
following the quantum section of Physics 263, we observed a sharp drop in students’ expectations on the 
coherence variable.  Written comments indicated that quantum physics was the reason. 
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3. We want our students to learn to use mathematics as a representation of physics and to build their 
intuitions and conceptual understanding into their equations. In quantum physics, the difficulty in 
building physical intuition tends to lead students to think that quantum physics “is just math” and lose the 
physical principles that lead us to choose the mathematics we use. In the Physics 263 final exam, about ¼ 
of the students said that if a particular frequency failed to produce photoelectrons, any change to the 
cathode would result in photoelectrons since “if eV0 = hf – φ gave zero before, changing φ will make it no 
longer zero.” They focused on the math, failing to take into account the physical conditions (that the right 
side must first be positive) that must be met before the equation can be applied. 

In this paper we have discussed one narrow issue needed for the study of quantum physics: 
probability. There is an interaction with other issues such as reading potential energy diagrams and 
understanding and interpreting wave functions, which we have also studied but that we do not discuss 
here. On this narrow issue of probability, our research confirms that students often have difficulties in 
understanding basic issues of probability.  In our calculus-based modern physics course, most students 
had never used a probabilistic representation to describe a physical system and they often held a strong 
deterministic view on physics phenomenon.  To address these issues, we developed a random picture 
metaphor to help them build a mental bridge to the idea of probability and we developed Tutorials using 
hands-on activities with classical systems.  

Our approach helped, but only represents a first step. In classes with traditional instruction, most 
students were found to be much confused by many of the basic ideas related to probability even after 
instruction.  In such cases, students often misinterpret the wavefunction as the trajectory or the energy of 
the object.  The students receiving tutorials developed a better understanding on issues related to 
probability and of those interviewed, most showed the ability to reason with and interpret probability 
densities.  After instruction with Tutorials, many students developed correct qualitative reasoning for 
probabilistic interpretations of classical systems and were able to use a correct understanding of 
probability density and the physical meaning of normalization.   

ACKNOWLEDGMENT 

This investigation has been a collaborative effort by many members of the Physics Education 
Research Group at the University of Maryland.  We particularly want to thank Richard Steinberg, 
Michael Wittmann, and Pratibha Jolly for discussions of these issues.  Also greatly acknowledged are 
Professor Priscilla Laws for her assistance in developing some of the experiments and Professor Leonard 
E. Jossem for his help with this manuscript.  This work is supported in part by the NSF grants DUE 965-
2877, REC-0087788 and the FIPSE grant P116B970186. 

Endnotes and Reference: 
                                                 
1  W. Casscells, A. Schoenberger, and T. Grayboys, “Interpretation by physicians of clinical 

laboratory results,” New England J. of Medicine 299, 999-1000 (1978); G. Keren, “Calibration 
and probability judgments; Conceptual and methodological issues,” Acta Psychologica  77, 
217-273 (1991); L. A. Brenner, D. J. Koehler, V. Liberman, and A, Tversky,  
“Overconfidence in probability and frequency judgments: A critical examination,” 
Organizational Behavior and Human Decision Process 65(3), 212-219 (1996).  

2  M. Barnes, “Dealing with Misconceptions about Probability,” Australian Mathematics 
Teacher v54 n1 p17-20 Mar (1998); G. R. Fast, “Using Analogies To Produce Long Term 
Conceptual Change: Overcoming High School Mathematics Students' Probability 
Misconceptions,” Paper presented at the Annual Meeting of the American Educational 
Research Association (Chicago, IL, March 24-28, 1997). 16 p., March (1997); P. Vahey, 



 12 

                                                                                                                                                             
“Toward an Understanding of Productive Student Conceptions of Probability: The Probability 
Inquiry Environment,” Paper presented at the Annual Meeting of the American Educational 
Research Association (Chicago, IL, March 24-28, 1997). 17 p., March (1997); Konold, C. 
“Inconsistencies in Students' Reasoning about Probability,” Journal for Research in 
Mathematics Education. v24 n5 p392-414 Nov (1993). 

3  The gambler’s fallacy states that future results will compensate for previous (short term) 
results in order to “bring things back to the average.” Note that this is applied opposite to the 
Bayesian approach. Thus, “10 heads in a row” is interpreted as evidence that tails will start to 
appear instead of as evidence for a biased coin. 

4  J. Clement, “Using bridging analogies and anchoring intuitions to deal with students’ 
preconceptions in physics,” J. Res. Sci. Teach. 30:10, 1241-1257 (1993). 

5  L. Bao, “Dynamics of Student Modeling: A Theory, Algorithms, and Application to Quantum 
Mechanics,” Ph.D. dissertation, University of Maryland, December 1999.  Available on 
request from http://www.physics.ohio-state.edu/~lbao. 

6  Materials for this course are available from the website of the Physics Education Research 
Group at the University of Maryland, 
http://www.physics.umd.edu/qm/qmcourse/welcome.htm.  

7  L. C. McDermott, P.S. Shaffer, Tutorials in Introductory Physics (Prentice Hall, New York, 
1998)  

8  This is associated with their difficulty in understanding potential energy diagram.  See 
reference 2 for more details. 

9  Modern experiments can actually trap and probe single quantum objects repeatedly, but this is 
not the norm. 

10  J. P. Doering, J.H. Moore, and M. A. Coplan, "(e, 2e) Spectroscopy," Rev. Mod. Phys., 66, 
(1994) 985-993. 

11  L., Bao, E.F. Redish, and R.S. Steinberg, “Student Misunderstandings of the Quantum 
Wavefunction,” AAPT Announcer 28 (2), 92 July (1998). 

12  The current version of the software is available from the first author at his web site, 
http://www.physics.ohio-state.edu/~lbao. 

13  In practice, the demonstrator simply drops a new ball onto the track as soon as one falls off. 
14  L. Bao and E. F. Redish, “Model Analysis: Assessing the Dynamics of Student Learning,” 

submitted to Cognition and Instruction. 
15  R. K. Thornton, “Conceptual Dynamics: Changing Student Views of Force and Motion,” 

Proceedings of the International Conference on Thinking Science for Teaching: the Case of 
Physics.  Rome, Sept. 1994. 

16  D. P. Maloney and R. S. Siegler, “Conceptual competition in physics learning,” Int. J. Sci. 
Educ., 15 (3), 283-295, (1993). 

17  E. F. Redish, R. N. Steinberg, and J. M. Saul, “Student expectations in introductory physics,” 
Am. J. Phys. 66, 212-224 (1998) 


	Understanding probabilistic interpretations of physical systems: A pre-requisite to learning quantum physics
	
	
	I. 	INTRODUCTION
	II. 	STUDENT DIFFICULTIES IN UNDERSTANDING PROBABILITY
	III. UNDERSTANDING PROBABILITY WITH CLASSICAL SYSTEMS
	Building the probability density function
	Using digital video to find probability distribution – a pseudo-random method
	Tutorial activities


	IV. EVALUATION OF THE CURRICULUM
	V. CONCLUSION




