Physics 336 K: Newtonian Dynamics
Homework 1: Solutions

(e 1) When N point particles interact via gravity the two-particle interaction

" force is of the form e, )
—r;
fij = Gmim; I——], (1)
ry r;
whereas the two-particle potential energy is
Gm;m;
Uyj = ———2. (2)
rj — 11
The equation of motion of the ith particle then becomes
& G (rj —r3)

The total kinetic energy is

The total potential energy is
| i |

o o] ®

where the factor 1/2 is to compensate for double counting. We can form
the scalar product of (3) with r;, and then sum over all particles, to obtain

J#i .
: . r, (r; —r;
E m;Tr; T; = E Gmcmj Z| (_] .|3Z), (6)
i i T3 — T



which is equivalent to

J#i b
F; - (rj —r;)
2(ltzjm1r1 P = ZG’msz T (7)
or dK o )
r;- rj—ri
ZszmJ |r —-ri3 3 (8)

where use has been made of ( ). Swapping the dummy indices ¢ and j on
the right-hand side of the above expression yields

i#] b (r J#i

3 o i — I r, —r;
ZGmez r; ._.rj|31):~Zszm3 J (] ) (9)

rj — il ®
0]

Forming half the sum of the previous two equations, we obtain

JF#e 5 . J#t
i = == =—— (1
ZG’m m] |rj——rz-|3 T 2.dt Z |r]—r1| dt (10)
where use has been made of (5). Hence,
d(K +U)
VATV i 11
dt bl ( )

which implies that the total energy of the system, E' = K +U, is a constant.

. Suppose that

ftzy, txa, txs, ) =t* f(x1, 2, T3, ) (12)
for all ¢t. It follows that
d
E f(txla th? t.’E3,‘ : ) = ata—l f(mla Loy, T3y - ) (13)
But, we can also write
d Of (tzy, txo, tas, )
— f(txy, txo, txs, = 5 . 14
dtf( xy, tTa, txs, ) Zx ot z;) (14)



Hence,

af(tx17tx2)tw37°"> - a—1
Zi:x"' At x;) = at flz1, 23, T3, ) (15)
Setting t = 1, we get
in 3f(331,22, $3a‘-') =af(a:1,aj2,;c3,---), (]_6)
i Li
Now,
fij = kik; ('rj miki) (17)

is the appropriate expression for an attractive central two-particle force
whose magnitude is k; k;j [r; — r;|~". However,

pp o) 1 a< ki kj > 18)

ey — "t n—1 8r; \Jrj — 1!

provided that n # 1. In other words,

fi; = —aa(fi. ; (19)
where 1 ki
Ui = n—1 b Rl 1 e (20)
is the two-particle potential energy. The total potential energy is
1 i#]
iF =z Y Do (21)
iyJ

However, if r; — tr; for all i then U — U/t"!. Hence, U is a homogeneous
function of degree 1 — n. It follows, from the previous question, that

oU
Zi: i 8I‘i

=—(n-1)U. (22)



Now, the equation of motion of the ith particle is

5 I 1 ok
mii;i:_g;ZUzj: 5
Y

(23)

The final step follows because only those terms in the sum for which either
j =i or k = i survive partial differentiation with respect to r;, and also
because U;; = Uj;. Hence, using (21), the equation of motion becomes

oU
(91‘1' .

Forming the scalar product with r;, and summing over all ¢, we get

ZmerI‘ZI—ZI'ZgZ:(n—l)U, (25)

%

where use has been made of (22). Now,

_ 1 d? .
;miri'ri—iaﬁ m; X - I‘i—Zmirz"I‘i, (26)
which yields f
Zmzrl rz——I 2K. (27)
So, from (25),
1 =
51:2K+(n—1)U. (28)

Now, in a steady state, I =0, so that
2K

U=— , 2
— (29)
In this case, the total energy becomes
. n—3
E=A+U:( )K. (30)
7 — 1



We need E < 0 for a bound state (assuming n > 1, so that U — 0 as the
system disperses to infinity). Hence, we need

n < 3. (31)
In other words, there are no bound steady states for n > 3.

. The virial equation, (28), for a gravitationally bound (i.e., n = 2) system,
can be written i

5f:2K+U:2(K+U)—U. (32)
However, the total energy, £ = K + U, of an isolated system is constant in
time. Hence, the above equation becomes

I=-2U+c¢ (33)

where ¢ = 4 F is a constant. Suppose that the system expands radially, in
a uniform fashion, by some factor 1 + u(t). If R is the outer radius of the
star, and M its total mass, then I o« M R? and U « G M/R. Hence, if
R — R (1 + u) at constant mass then I — Iy (1 +u)? and U — Up/(1 + u),
where Iy and Uy are the unperturbed (i.e., v = 0) moment of inertia and
potential energy, respectively. It follows from (33) that, in the unperturbed
(i.e., d/dt = 0) state,

0=-2Upy+c. (34)

Hence, (33) gives

Lo (1 + )] = ~200/(1 +) + (35)

Assuming that |u| < 1, so that the radial oscillations are of relatively small
amplitude, we get
d?u
2IOW:—2U0+c+2Uou:—-2|U0|u, (36)
where use has been made of (34) and the fact that Uy < 0. Hence, the
radial oscillation equation takes the form

dzu |Uo|
—— U.

dt2 — I (37)
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