The orbital speed at perihelion is (since the radial component of the velocity
is zero)

vp=1,0 = BB 5a3x10tme = 548kmsY, (9)
r, a(l—e)

Likewise, the orbital speed at aphelion is

. h h
Vg =Tgf=—=——-=9012x10°ms ! =0912kms™ 1.  (10)
re a(l+4+e)
P il
( & 2.\) The conserved energy per unit mass of the comet is

N
N————

2 GM
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= . (11)

Now, the Earth is in an approximately circular orbit of radius ry (where
ro = 1 AU). Its orbital velocity is

G MN\'?
Vo = < o ) . (12)
Let d =r/rg and ¢ = v/vy. It follows that
VG (o2
5:ﬁ<q d—2). (13)

Now, the comet’s orbit is elliptical /parabolic/hyperbolic depending on whether
E<0/E=0/E > 0. Since, v¢/2d is positive, it follows that the orbit

is elliptical /parabolic/hyperbolic depending on whether ¢*d < 2/¢*>d =
0/q¢*d > 0.

3. A Keplerian orbit is characterized by

a(l—e?)
~ 1+4ecosf’ )
20 = h. (15)



Let r = a + ér, where 6r ~ O(e). Ignoring terms of O(e?), the above
expression yields 0r ~ —ea cosf, so that

r~a(l—ecosh). (19)

However, this is the same as (16). Applying the sine rule to ASEC, we
obtain sin SEQ/SQ = sin SQE/SFE, or sin(f — «)/(2ea) = sina/r. Let
0 = a + 80, where 60 ~ O(e). Neglecting terms of O(e?), we obtain §6 ~
2e sinf. Hence,

a~f—2esind, (20)

and so, .
&~0(1l—2ecosb). (21)

However, from (17), the right-hand side of the above equation is constant
(to first-order in e). Hence, & is constant (to first-order in e). We conclude
that a Ptolemaic orbit in which « increases uniformly in time reproduces a
Keplerian orbit (to first-order in e).

S: } 4."’\_}The Earth’s orbit about the Sun is characterized by

L
N
s

r = a(l—ecoskE), (22)

E—esinE = 27 <%> : (23)
o\ 172

tan(6/2) = (1 i_ e) tan(F/2), (24)

where E is the elliptic anomaly, e = 0.01673, and 7' = 365.24 days. Att =0,
is is easily seen that £ = 0, § = 0, and r = a (1 — e), which corresponds
to the perihelion point. After the Earth’s radius vector has rotated 90°, we
have § = /2. Thus, from (24),

1—e
l1+e

1/2
tan(E/2) = < > tan(mw/4) = 0.9834. (25)

It follows that E' = 0.4947 7. So, F — e sin £ = 0.4893 7. Hence, from (23),

048937

t
2

T = 89.37 days. (26)



This is the time interval for the Earth’s radius vector to rotate through 90°,
starting from the perihelion point.

At the aphelion point, § = =, and it is easily seen that £ = 7 and E —
e sin & = 7. It follows that

t = 21 T = 182.62 days. (27)

T

After the Earth’s radius vector has rotated 90°, we have § = 37 /2. Thus,
from (24),

l1—e
1+4+e

1/2
tan(E/2) = ( > tan(37/4) = —0.9834. (28)

It follows that £ = 1.5053 7. So, E'—e sin E = 1.5106 7. Hence, from (23),

) 1.5106 7
- 29

; T = 275.86 days. (29)

Thus, the time interval for the Earth’s radius vector to rotate through 90°,
starting from the aphelion point, is 275.86 — 182.62 = 93.25 days.

. The equation of the parabolic (e = 1) orbit of a comet with perihelion
distance p (at § = 0) is

2p
r=—, 30
1+ cost (30)
The equation of the Earth’s circular orbit of radius a is
T = g, (31)
These two orbits intersect when
2p
= — 32
. 14 cos6 (32)
which can be rearranged to give
2
cosf = —1+ =22 (33)

a



Physics 336K: Newtonian Dynamics
Homework 4: Solutions

1.

é 6 /'2/_

A particle moving in a central force field whose potential energy per unit
mass is —k/r? (which would produce a central force varying as 1/r%) has a
conserved energy per unit mass

iy (1)

T

where h is the conserved angular momentum per unit mass. Hence,
ri? —2&r* =C, (2)

where C = 2k — h? is a constant. Let uw = r2. It follows that @ = 27r7.
Thus,
% —8E&u=4C. (3)

Differentiation with respect to time yields
u(ti—4&)=0. (4)
Thus, either @ = 0, which corresponds to an (unstable) circular orbit, or
©1=4E. (5)
The most general solution of the above equation is
u=r2=2Et>+ Bt+C, (6)
where B and C' are arbitrary constants.

The equation of motion of a point mass moving in a central potential (per
unit mass) V(r) is

d*u _y dV
g =T (7)



where u = r~1, and r, 6 are polar coordinates. Here, h is the angular

momentum per unit mass.

Suppose that
P = Py o8 f,

(8)

which is the equation of a circular orbit which passes through the origin. It

follows that

"o
B = ;
cos 6
e 2 —1 o
LB L TR =2rly’ —wu
df?  cos?6  cosf e '
So,
Vv d*u
=f o Zlgz—+u:27’02u3—u+u:2ro2u
which can be integrated to give
T _h27"02 o _h2r02
2 2rs

The central force per unit mass is thus

[ ﬂ e 2h? 1
dr 8
Thus, the force law is inverse-fifth.
. Let
r=rger?,

which corresponds to an expanding spiral orbit. So,

and

3

]

(12)



N

3/ U7\

=

Thus, (7) yields
dav
du
which can be integrated to give

= —-h2(1+k%u, (17)

Ve-—"3y¥"=——- (18)

Hence,

Lo LA Tl L 19
dr o ’ 19)
and the force law is inverse-third.
In the potential (18), the radial equation of motion, (7), yields
d*u .
gz tu=(1+E)u, (20)
or ,
d°u 9
W 4+ k“u=0. (21)

We have already seen the orbit associated with the solution rg Le 0 of the

above equation. However, ry Lek9 is also a solution. The corresponding
orbit
r=rge *f (22)

is a decaying spiral. Finally, if £ = 0 then u = rj ! and
r =To, (23)
which corresponds to a circular orbit.

We are told that

e—r/a

Jir)=—t

where ¢ > 0 and a > 0. A circular orbit of radius rq is stable provided that

o (24)

f(ro) + %0 f'(ro) < 0. (25)



The stability criterion yields

—ro/a —ro/a 2 \—To0/a
—cl -+39<Ce Y ) <0, (26)
i 9 arg o
or )
e~ To/a )
_ L——)<O. 27
= 37é ( a (A7}

Given that ¢ > 0 and a > 0, we conclude that the orbit is stable provided
that rg < a.

. A dust cloud of uniform mass density p generates a central force per unit
mass given by Gauss’ law:

flr)S(r) =—=GpV(r), (28)

where S(r) = 47 r? is the area of a spherical Gaussian surface of radius r,
and V(r) = (4/3) wr3 is the enclosed volume. Thus,

f(r):—%Gpr. (29)

So, the total radial force per unit mass due to both the Sun and the dust
cloud is

GM 1
o . 30
where M is the solar mass. Now, the apsidal angle for a nearly circular
orbit of radius r is -
rodf\
- F, SE i i .
v ”( Ty dr) g

However,

rdf _2GM/r*-(1/3)Gpr _ [1— (1/6)pr3/M]
fdr  —-GM/r?—(1/3)Gpr 1+ (1/3)pr3/M |

Assuming that pr3/M < 1, we obtain

r df 1 pp3



Thus, the apsidal angle is

3\ —1/2 3
~ kil e LR e
¢_W<1+M> ~ T 5 ] ~ Tr

My
—_ 34
M ) ( )

| W

where My = (4/3) m pr? is the mass of dust enclosed by the planetary orbit.

/6. We are told that

GM GMe

Vir) = : 35
()= -5 - 2 (3)
where 5
So, given that f = —dV/dr, the radial force per unit mass is
GM 3GMe
f=-Zp - S (37
It follows that
rdf 2GM/r*4+12GMe/r* 21+6€/T2 (38)
fdr —GM/r? -3 T 143¢/r?
Assuming that ¢/r? < 1, we obtain
r df 6e
- —~—-2—- —,
f dr i (39)
Hence, from (31), the apsidal angle is
6e\ /2 3me
wf:W(l—;Q—) ’:7T—I—T—227r+57,b, (40)
where 6r RAR
-
0P = — . 41
y="F "5 (41)
The perihelion precession rate is
209
§==2, (42



where 7" is the orbital period. But,

3/2

Hence,

¢=—crmz R (44)

Given that G = 6.67 x 10~X Nm2kg2, M = 5.97 x 1024 kg, R = 6437 km,
and AR/R = 13/4000, we obtain

r

. 6(GM)V2 AR <R)7/2

. 7/2 72
¢=4.8x10"° <E> rad./sec = 23.8 <E> deg./day. (45)
T r



