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Physics 664 2nd Midterm Exam NAME

Problem 1.

A rigid body that is rotating freely has a symmetry axis €3(¢) and orthogonal principal axes of
inertia €(t) and €3(¢) that change with time. The instantaneous angular frequency vector can

be expressed as & = w; €] + w265 + w3f3. Euler’s equations for the components w (), wo(t), and
w3(t) are
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where /) and 7, are the principal moments of inertia.

(A) Show that wy and wi + w? = w? are constants of the motion.
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(B) Let z(t) = wi(t) + iwn(t). Show that z(t) satisfies a first-order homogeneous differential
equation. Write down the most general complex solution z(t) to the differential equation.
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(C) Find a simple solution to Euler’s equations for wi(t), w,(t), and ws(t) that corresponds to
rotation about the principal axis €.
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(D) Find the most general solution to Euler’s equations for w(t), wy(t), and ws(t), which
depends on three arbitrary real constants.
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(E) Suppose the solutions wy(t), w2(t), and ws(t) to Euler’s equations are known and that the
initial principal axes €,(0), €>(0), and €3(0) are given. Write down the additional differential
equations that determine the principal axes €| (t), €(t), and €3(t) at later times ¢.
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Problem 2.
In a rotating reference frame attached to the surface of the earth in Columbus, a particle has
position r(t), velocity r(f) and acceleration /( ). Its acceleration @ in an inertial frame is

d=r(t)+20 x 7+ Q3 x [ x (R, + 7).

where R, is the radius of the earth, € = Q(cos \ €y, +sine;), Q =27/(1 day). and X is the
latitude of Columbus (40° north).

(A) Draw a circle that represents a slice through the center of the earth that also passes
through the north pole and through Columbus. Label these three points. Draw the vectors .
R.e., and €, and indicate the angle A. Given that ¢, = €, X €, points east, specify the
directions of €, and €, using one of the words “up”, “down”, “north”, “south”. or “west”.
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(B) A particle of mass m is subject only to the gravitational force —mgé,. Write down
Newton’s equations in the rotating frame. Identify the centrifugal force and the Coriolis force.
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(C) Suppose a particle near the surface of the earth (so that 7 is negligible compared to R.€,)
is dropped from rest. What is its initial acceleration vector r(f =0)?
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If we consider only gravity and the Coriolis force, the components of Newtons'’s equations
reduce to

= 2(QsinA)y — 2(Qcos \)z,
= =2(Qsin\)z,
= —g+2(Qcos\)z.
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(D) If the particle is dropped from rest at a height k. the solution in the absence of the
Coriolis force is

to(t) =0, yo(t) =0, 2(t) =h— %gtz.

Simplify the 3 equations of motion, dropping terms that do not contribute at first order in €.
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(E) When it hits the ground (= = 0), the particle will have been deflected by the Coriolis force.
Determine the direction and magnitude of its deflection to first order in .
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(F) If the particle is thrown horizontally north from a height A with veloczfty vg, the solution in
the absence of the Coriolis force is
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2o(t) =0, wo(t) =vot,  2(t) =h— gt
Simplify the 3 equations of motion, dropping terms that do not contribute at first order in Q.
X = 208Ny = 2(Q w2,
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Problem 3.

A thin uniform rod of mass M and length L is suspended from one end of a string of length ¢
that is attached to a fixed support. Consider the motion of the rod in the r—» plane while the
string remains taut. Take the point of support to be the origin: (r,z) = (0,0).

(A) Calculate the moment of inertia I of the rod about a perpendicular axis through its center
by evaluating an integral.
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(B) Sketch a generic configuration of the string and the rod and draw all the forces acting on
the rod, including gravity. Which forces have unknown magnitudes? Which forces produce
torques around the center of mass?
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(C) The configuration of the rod can be described by its center-of-mass coordinates Ceima- 2o )
and by its rotation angle ¢ from the vertical. Determine the coordinates (20, 29) of the end of
the rod that is attached to the string.
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(D) Express the condition that the string remains taut as a holonomic constraint on Boms Sepn
and ¢.
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(E) Express the kinetic energy K of the rod and its potential energy U in terms of rey, zem. .
and their time derivatives.
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Let 6 be the angle between the string and the vertical. (Recall that ¢ is the angle between the
rod and the vertical.) We can use 8 and ¢ as generalized coordinates for the system.

(F) Express ooy and zey in terms of 8 and o.
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(G) Express K and U in terms of 8, ¢, and their time derivatives, |
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(H) Write down the Lagrangian L for this system. Write down Lagrange’s equations for # and
¢ in terms of partial derivatives of L.
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(I) Write down Lagrange’s equation for ¢ explicitly in terms of 6, ¢, 6, and o. (K can be
reduced to 3 M[(20% + (L cos(8 — ¢)8¢)| plus terms that do not depend on 6 or 6.)

0= = Ln[2L%6 1 4L cnlo-4)7 ]

I~

=L MLl an(o-¢)6 ¢ —Ng Lot

Q
<

LML+ inLt cnlo-d) = ~tnitactddi-rylocs
€ .



