Renormalization of Yukawa Model

The (incomplete) Lagrangian for the Yukawa model is

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - M\bar{\psi}\psi + \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} - g\phi\bar{\psi}\gamma_{5}\psi.$$

The Feynman rule for the vertex is $-ig\gamma_5$. The Feynman rules for the counterterms are

$$-i \delta g \gamma_5, \qquad -i \left[\delta M + \delta Z_f \left(p - M \right) \right], \qquad -i \left[\delta m^2 + \delta Z_b \left(p^2 - m^2 \right) \right].$$

A. Draw the three 2-loop diagram for the boson self-energy $-i\Pi(p^2)$. Determine the superficial degree of divergence D of one of the diagrams by power counting the loop momenta.

B. Identify the UV divergent subdiagrams of each of the 2-loop diagrams. (Each diagram has more than one divergent subdiagram.)

C. Draw the 1-loop counterterm diagrams for the boson self-energy $-i\Pi(p^2)$ that would be required to cancel the ultraviolet divergences from subdiagrams of the two 2-loop diagrams if there are no cancellations between diagrams.

The boson self-energy $\Pi(p^2)$ can be expanded around a negative invariant mass: $p^2 = -\mu^2$. The expansion in powers of $p^2 + \mu^2$ can expressed in the form

$$\Pi(p^2) = \Pi_1(-\mu^2) + \Pi'(-\mu^2) (p^2 + \mu^2) + \Pi_{\text{remainder}}(p^2).$$

D. Identify the superficial degree of divergence of each term. Verify that the divergent terms are polynomial in the 4-momentum p^{μ} .

$$TL_1(-\mu^2)$$
: $D=2$ $TL_2(-\mu^2)$: $D=0$ $T_{pemainder}(P)$: $D \leq -2$ (finite)

The 1PI 4-boson Green function $G(p_i^2, p_i.p_j)$ with incoming momenta p_1, p_2, p_3 , and p_4 is a function of 6 independent scalar variables: $p_1^2, p_2^2, p_3^2, p_4^2, p_1.p_2, p_1.p_3$, and $p_2.p_3$, with the constraint

$$(p_1 + p_2)^2 + (p_1 + p_3)^2 + (p_2 + p_3)^2 = p_1^2 + p_2^2 + p_3^2 + p_4^2.$$

E. Verify that the symmetric Euclidean point $p_1^2 = p_2^2 = p_3^2 = p_4^2 = -\mu^2$ and $p_1.p_2 = p_1.p_3 = p_2.p_3 = \frac{1}{3}\mu^2$ is compatible with the constraint.

$$3[(-\mu^2) + 2, \frac{1}{3}\mu^2 + (-\mu^2)] = -4\mu^2 \qquad 4(-\mu^2) = -4\mu^2$$

F. Draw three 2-loop diagram for $-i G(p_i^2, p_i.p_j)$ that do not differ by permutations of any external legs. Determine the superficial degree of divergence D for one diagram by power counting the loop momenta.

G. Draw the one-loop counterterm diagrams for $-i G(p_i^2, p_i.p_j)$ diagram that cancel ultraviolet divergences from subdiagrams of the 2-loop diagrams.

The 1PI 4-boson Green function $G_1(p_i^2, p_i.p_j)$ can be expanded around the symmetric Euclidean point. The expansion in powers of $p_i^2 + \mu^2$ and $p_i.p_j - \frac{1}{3}\mu^2$ can expressed in the form

$$G(p_i^2, p_i.p_j) = G(p_i^2 = -\mu^2, p_i.p_j = \frac{1}{3}\mu^2) + G_{\text{remainder}}(p_i^2, p_i.p_j).$$

H. Identify the superficial degree of divergence of each term. Verify that the divergent terms are (a trivial) polynomial in the 4-momenta p_i^{μ} .

$$D=0$$
 $D=-2$ (finite)

I. The UV divergence can be cancelled by a counterterm $-i \delta \lambda$. Write down the interaction term in the Lagrangian that would give such a counterterm.

$$\mathcal{L}_{counterterm} = -\frac{\$\lambda}{4!} * *4$$