Renormalization of Dirac Spinor Field Theory

A possible Lagrangian for a self-interacting Dirac spinor field is

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi - \frac{1}{2}g(\bar{\psi}\psi)^{2} + \delta\mathcal{L}.$$

The interaction vertex can be represented by a double dot with two lines with consistent arrows attached to each dot. It can be expressed as $-iq1 \otimes 1$.

A. Draw the 2 one-loop diagrams for the fermion self-energy.

B. Draw 3 of the 9 one-loop diagrams for the 1PI 4-fermion Green function.

A diagram for the 1PI Green function with E external fermion lines can have P propagators, V vertices, and L loops, where these numbers satisfy the topological identities

$$L = P - V + 1, \qquad 2P + E = 4V.$$

C. Verify that the vertex satisfies the 1st topological identity.

D. Verify that if two lines in a diagram are connected by an additional vertex, the changes in the numbers satisfy the 1st topological identity: $\Delta L = \Delta P - \Delta V$.

$$\Delta L = 1$$
, $\Delta P = 2$, $\Delta V = 1$ \longrightarrow $\Delta L = \Delta P - \Delta V$

E. Verify that both sides of the 2nd topological identity count the total number of lines attached to all the vertices in the diagram.

each vertex has 4 incoming lines each external livie is each propagator is attached to two vertex, each external livie is

The superficial degree of divergence of the diagram is D = 4L - P.

F. Use the 1st topological identity to eliminate L.

$$D = 4(P-V+1) - P = 3P-4V+4$$

G. Use the 2nd topological identity to eliminate P.

$$D = 3 \cdot \pm (4V - E) - 4V + 4 = 4 - \frac{3}{2}L + 2V$$

The superficial degree of divergence of a diagram for the 1PI Green function with E external fermion lines is $D = 4 - \frac{3}{2}E + 2V$.

H. Verify that for any given E, there are 1PI diagrams with E external lines with $D \ge 0$, and also that there are diagrams for which D is arbitrarily large.

Dzo if
$$V = \frac{3}{4}L - 2$$
 as $V \rightarrow \infty$, $D \rightarrow \infty$

Conclude that the cancellation of UV divergences requires a counterterm vertex with all possible numbers E of external legs, and also that its Feynman rule must be a polynomial of arbitrarily high order in the external momenta.

Renormalizability therefore requires the Lagrangian to include terms with all possible equal numbers of factors of ψ and $\bar{\psi}$ and all possible even numbers m of derivatives ∂ that are consistent with the symmetries.

I. Given that the action $S = \int d^4x \mathcal{L}$ is dimensionless and that a coordinate x^{μ} has mass dimension -1, deduce the mass dimension of \mathcal{L} .

$$[XM] = \frac{1}{M} \implies [Z] = M^{4}$$

J. Given that a derivative ∂^{μ} has mass dimension +1, use the term $i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$ in \mathcal{L} to deduce the mass dimension of ψ .

K. Deduce the mass dimension of an operator \mathcal{O}_{mn} with n factors of both ψ and $\bar{\psi}$ and m derivatives ∂ . $\left[\bigcirc_{mn}\right] = \left[\partial\right]^m \left[\psi\right]^{2n} = \mathcal{M}^{m+3n}$

L. Given a term $G_{mn}\mathcal{O}_{mn}$ in \mathcal{L} , express the coupling constant G_{mn} as a product of a dimensionless coupling constant \hat{g}_{mn} and the appropriate number of factors of a mass scale M. $G_{mn} = \frac{\hat{g}_{mn}}{\mathcal{M}^{m+3n-4}}$

A basis of fermion bilinears with simple Lorentz transformation properties is

$$\bar{\psi}\psi, \quad \bar{\psi}\gamma^{\mu}\psi, \quad \bar{\psi}\sigma^{\mu\nu}\psi, \quad \bar{\psi}\gamma^{\mu}\gamma_5\psi, \quad \bar{\psi}\gamma_5\psi.$$

They transform under parity with factors of +1, $(-1)^{\mu}$, $(-1)^{\mu}(-1)^{\nu}$, $-(-1)^{\mu}$, and -1, respectively.

M. Write down the 5 independent interaction terms in \mathcal{L} of the form $\bar{\psi}\Gamma_1\psi\,\bar{\psi}\Gamma_2\psi$ allowed by Lorentz invariance and parity symmetry.

N. Write down the 3 additional interaction terms if parity is not a symmetry.

O. What is the largest value of N for which an interaction term of the form $\bar{\psi}\Gamma_1\psi\,\bar{\psi}\Gamma_2\psi\ldots\bar{\psi}\Gamma_N\psi\ldots$ is nonzero?

$$N = 4$$