Path Integral for Two-Level Quantum System

The quantum mechanics of a two-level system with energy splitting wy on the
time interval 0 < £ < 7' can be formulated in terms of a path integral over a
complex Grassman function (¢) in the presence of a time-dependent complex
Grassmann source 7(t):
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where the integral is over paths 1 (¢) that satisfy ¥(0) = 0 and %(T") = 0.

A. Use integration by parts to express the action for n = 0 in the form
Soat [E(w'on — B) — woty] = [odt [vTOw),

where O is a differential operator.
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B. Verify that the action can be expressed as
Jdt [ Oy + iy + pin] = [dt [( + OO + O71y) — nTO~ ).
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The Gaussian path integral over gf co[nﬁ)lex G;‘vassmann7f31nction P(t) is

/ DY D exp (7, fgdt [w‘ww]) = N Det M.

where A is a divergent factor that depends on T.

C. Use a shift in the integration path (%) to express Z[n] as the product of a
functional of n(¢) and a factor that does not depend on 7.
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The path integral for the two-level quantum system in the presence of the
Grassmann source n(t) can be expressed as

Zn) = Z[0] exp (— i fdt fdt' [n' (YO (4, t’)n(t’)]).

D. Calculate the variational derivative of Z[n| with respect to 7, expressing it
as the product of Z|n] and a Grassmann function.
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E. Calculate the second variational derivative of Z[n] with respect to 7 and 7.
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The propagator for the two-level quantum system can be expressed in terms of
variational derivatives of a path integral:
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F. Evaluate the propagator using the result of part E.
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G. The operator O~ can be expressed as an integral transform:
dw ey 1
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Verify this by showing that O O~ (¢, ¢) = §(t — t').
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