Path Integral for Anharmonic Oscillator

The action for an anharmonic ocscillator is

$$S[x] = \int_{-\infty}^{+\infty} dt L, \qquad L = \frac{1}{2}\dot{x}^2 - \frac{1}{2}\omega^2 x^2 - \frac{1}{24}\lambda x^4.$$

The complete propagator can be expressed as a ratio of path integrals:

$$\langle 0|\mathrm{T}\hat{x}(t_1)\hat{x}(t_0)|0\rangle = \frac{\int \mathrm{D}x \, e^{iS[x]} \, x(t_1)x(t_0)}{\int \mathrm{D}x \, e^{iS[x]}},$$

where the integral is over all paths x(t). The path integral is invariant under a shift in the path:

$$x(t) \longrightarrow x(t) + \varepsilon(t)$$
.

A. What is the change δL in the Lagrangian at first order in ε ?

$$SL = \pm .2\dot{x}\dot{\varepsilon} - \pm \omega .7\dot{x}\varepsilon - \pm 4\lambda .4\dot{x}^{3}\varepsilon = \dot{x}\dot{\varepsilon} - \omega^{2}\dot{x}\varepsilon - \frac{1}{6}\dot{x}\dot{x}^{3}\varepsilon$$

B. The first-order change in the action is $\delta S = \int dt \, \delta L$. Using integration by parts, express δS as an integral over t with an explicit factor of $\varepsilon(t)$.

$$SS = \int dt \left(\mathring{x} \dot{\varepsilon} - \omega^2 X \varepsilon - \dot{\xi} X X^3 \varepsilon \right)$$
$$= \int dt \left(-\mathring{X} - \omega^2 X - \dot{\xi} X X^3 \right) \varepsilon$$

C. The first-order change in $x(t_0)$ is $\delta x(t_0) = \varepsilon(t_0)$. Using a delta function, express $\delta x(t_0)$ as an integral over t with an explicit factor of $\varepsilon(t)$.

$$S_{X}(t_{0}) = E(t_{0}) = \int dt S(t-t_{0}) E(t)$$

D. The first order change in $e^{iS}x(t_0)$ is

$$\delta(e^{iS}x(t_0)) = e^{iS}[i\delta S x(t_0) + \delta x(t_0)].$$

Express this as an integral over t with an explicit factor of $\varepsilon(t)$.

$$S(e^{iS}_{X}(t)) = e^{iS} \left(i \int dt \left[-\ddot{x} - \omega^{2}_{X} - \frac{1}{6} \chi^{3} \right] \mathcal{E} \cdot \chi(t) + \int dt S(t-t) \mathcal{E}(t) \right)$$

$$= e^{iS} \int dt \left(i \left[-\ddot{\chi}(t) - \omega^{2}_{X}(t) - \frac{1}{6} \chi^{3}(t) \right] \chi(t) + S(t-t) \mathcal{E}(t) \right)$$

The first order change in $e^{iS[x]}x(t_0)$ from the shift $x(t) \to x(t) + \varepsilon(t)$ is

$$\delta\left(e^{iS[x]}x(t_0)\right) = e^{iS[x]} \int_{-\infty}^{+\infty} dt \left(i\left[-\ddot{x}(t) - \omega^2 x(t) - \frac{1}{6}\lambda x^3(t)\right]x(t_0) + \delta(t - t_0)\right) \varepsilon(t).$$

The path integral weighted by only $x(t_0)$ is

$$\int \mathrm{D}x \, e^{iS[x]} \, x(t_0).$$

This path integral is invariant under the shift $x(t) \to x(t) + \varepsilon(t)$ for any infinitesimal function $\varepsilon(t)$.

E. Express the first-order change in this path integral as an integral over t with an explicit factor of $\varepsilon(t)$.

$$\delta \left(\int Dx \, e^{iS[x]} \, x(t_0) \right)$$

$$= \int_{-\infty}^{+\infty} dt \, \varepsilon(t) \times \int D \times e^{iS[x]} \left(i \left[- \chi(t) - \omega^2 \times (t) - \frac{1}{6} \chi^3(t) \right] \times (t_0) + \mathcal{S}(t - t_0) \right)$$

F. If $\int dt f(t)\varepsilon(t) = 0$ for all functions $\varepsilon(t)$, the function f(t) must be 0. Deduce from part E that a function of t involving path integrals must be zero.

$$\int \mathcal{D} \times e^{iS[x]} \left(i \left[-\ddot{x}(t) - \omega^2 \times (t) - \dot{\epsilon} \times x^3(t) \right] \times (t_0) + S(t - t_0) \right)$$

G. By dividing each term in this equation by the unweighted path integral, obtain the Schwinger-Dyson equation for the complete propagator.

$$\left[\left(\frac{d}{dt} \right)^2 + \omega^2 \right] \langle 0 | \mathrm{T} \hat{x}(t) \hat{x}(t_0) | 0 \rangle = - \frac{1}{6} \lambda \langle 0 | \mathrm{T} \hat{x}^3(t) \hat{x}(t_0) | 0 \rangle - \hat{\iota} S(t - t_0)$$