Schwartz Chapter 14: Problems 5, 6

Problem 14.5 (hints)

(a) A more explicit form for the Schwinger-Dyson equation for the photon field in scalar QED is

$$
\square_{x}^{\mu \nu}\left\langle A_{\nu}(x) A_{\alpha}(y) \phi^{\dagger}(z) \phi(w)\right\rangle=?
$$

where $\square^{\mu \nu}=-g^{\mu \nu} \partial^{2}+\partial^{\mu} \partial^{\nu}-(1 / \xi) \partial^{\mu} \partial^{\nu}$. It can be derived from the invariance of the functional integral under shifts of the field $A_{\mu}(x)$. Start with the numerator of the path integral formula for $\left\langle A_{\alpha}(y) \phi^{\dagger}(z) \phi(w)\right\rangle$, and use its invariance under the change of variables $A_{\mu}(x) \rightarrow A_{\mu}(x)+\varepsilon_{\mu}(x)$, where $\varepsilon_{\mu}(x)$ is a four-vector function.
(1) Write down the equation that expresses that invariance.
(2) Expand both sides of the equation to first order in ε_{μ}.
(3) Express the equation in the form

$$
0=\int d^{4} x \varepsilon_{\mu}(x)(\text { function of } x) .
$$

(4) Deduce from this that the function of x must vanish.
(5) Divide each term by the denominator of the path integral formula.
(b) A Schwinger-Dyson equation for current conservation in scalar QED is

$$
\left(\partial / \partial x^{\mu}\right)\left\langle j^{\mu}(x) A_{\alpha}(y) \phi^{\dagger}(z) \phi(w)\right\rangle=?
$$

where $j^{\mu}=i\left(\phi^{*} \partial^{\mu} \phi-\partial^{\mu} \phi\right)$. It can be derived from the invariance of the functional integral under space-time dependent phase transformation of the field $\phi(x)$. Start with the numerator of the path integral formula for $\left\langle A_{\alpha}(y) \phi^{\dagger}(z) \phi(w)\right\rangle$, and use its invariance under the change of variables $\phi(x) \rightarrow \exp (i \varepsilon(x)) \phi(x)$.

